@ARTICLE{26583204_908894197_2024, author = {Г. Л. Бекларян}, keywords = {, научно-производственный кластер, высокотехнологичное предприятие, наукоград, производственные характеристики, имитационное моделирование предприятий, валовый городской продукт, агентное моделирование, системная динамика, гравитационный эффект, производственная функцияAnyLogic}, title = {Агентное моделирование и оптимизация характеристик научно-производственных кластеров}, journal = {Бизнес-информатика}, year = {2024}, number = {1 Vol.18}, pages = {36-51}, url = {https://bijournal.hse.ru/2024--1 Vol.18/908894197.html}, publisher = {}, abstract = {      В работе представлена разработанная агент-ориентированная имитационная модель развития научно-производственных кластеров России, реализованная на примере высокотехнологичных предприятий, расположенных в четырех наукоградах (г. Троицка, г. Обнинска, г. Пущино и г. Протвино). Предложен новый поход к моделированию и оптимизации валового городского продукта (GMP), учитывающий влияние «гравитационного эффекта» на перераспределение трудовых ресурсов между развивающимися наукоградами и соответствующими предприятиями, объединенными в единые научно-производственные кластеры. Важным элементом такого подхода является формирование различных сценариев стратегического развития оцениваемых научно-производственных кластеров и поддержка возможности выбора наиболее предпочтительного сценария с использованием эволюционного оптимизационного алгоритма. Разработана и реализована в AnyLogic двухуровневая имитационная модель, описывающая возможные траектории развития научно-производственных кластеров с соответствующим изменением значений важнейших характеристик: численности экономически активного населения, количества научно-производственных предприятий, объема продукции выпускаемой в высокотехнологичных отраслях экономики, GMP и др. Спроектированный программный комплекс предназначен, в первую очередь, для управления научно-производственными кластерами, реализующими стратегию инновационного развития. Такой комплекс использует методы системной динамики и агентного имитационного моделирования, поддерживаемые в системе AnyLogic, генетические оптимизационные алгоритмы и ГИС-карты наукоградов и др. для реализации требуемой функциональности. Апробация программного комплекса выполнена с использованием реальных данных, опубликованных в утвержденных стратегиях развития соответствующих наукоградов. В результате проведенных численных экспериментов предложены некоторые рекомендации по развитию изучаемых научно-производственных кластеров с учетом их взаимовлияния и имеющейся ресурсной базы.}, annote = {      В работе представлена разработанная агент-ориентированная имитационная модель развития научно-производственных кластеров России, реализованная на примере высокотехнологичных предприятий, расположенных в четырех наукоградах (г. Троицка, г. Обнинска, г. Пущино и г. Протвино). Предложен новый поход к моделированию и оптимизации валового городского продукта (GMP), учитывающий влияние «гравитационного эффекта» на перераспределение трудовых ресурсов между развивающимися наукоградами и соответствующими предприятиями, объединенными в единые научно-производственные кластеры. Важным элементом такого подхода является формирование различных сценариев стратегического развития оцениваемых научно-производственных кластеров и поддержка возможности выбора наиболее предпочтительного сценария с использованием эволюционного оптимизационного алгоритма. Разработана и реализована в AnyLogic двухуровневая имитационная модель, описывающая возможные траектории развития научно-производственных кластеров с соответствующим изменением значений важнейших характеристик: численности экономически активного населения, количества научно-производственных предприятий, объема продукции выпускаемой в высокотехнологичных отраслях экономики, GMP и др. Спроектированный программный комплекс предназначен, в первую очередь, для управления научно-производственными кластерами, реализующими стратегию инновационного развития. Такой комплекс использует методы системной динамики и агентного имитационного моделирования, поддерживаемые в системе AnyLogic, генетические оптимизационные алгоритмы и ГИС-карты наукоградов и др. для реализации требуемой функциональности. Апробация программного комплекса выполнена с использованием реальных данных, опубликованных в утвержденных стратегиях развития соответствующих наукоградов. В результате проведенных численных экспериментов предложены некоторые рекомендации по развитию изучаемых научно-производственных кластеров с учетом их взаимовлияния и имеющейся ресурсной базы.} }