@ARTICLE{26583204_934275719_2024, author = {Е. В. Чумакова and Д. Г. Корнеев and М. С. Гаспариан and И. С. Махов}, keywords = {, операционные риски, компетентность персонала, искусственная нейронная сеть, машинное обучение, нейронная сеть прямого распространениявысокоуровневая библиотека Keras}, title = {
Применение нейросетевых технологий для оценки компетентности персонала в задачах контроля операционного риска кредитной организации
}, journal = {Бизнес-информатика}, year = {2024}, number = {2 Vol 18}, pages = {7-21}, url = {https://bijournal.hse.ru/2024--2 Vol 18/934275719.html}, publisher = {}, abstract = { Статья посвящена вопросам контроля операционных рисков кредитной организации, связанных с действиями персонала. Контроль операционных рисков является важным аспектом деятельности кредитной организации. Несмотря на то, что Банк России в регламентирующих документах подробно описал набор действий, которые должны проводить банки для контроля операционных рисков, на практике кредитные организации испытывают серьезные трудности в процессе работы с операционным риском, связанным с действиями персонала. Это может объясняться, прежде всего, сложностью идентификации и формализации указанного риска. Одним из основных источников операционных рисков, связанных с действиями персонала, является недостаточная квалификация сотрудников. Это может привести к снижению доступности и качества услуг, предоставляемых кредитными организациями, а также к возможным финансовым и репутационным потерям. Целью проводимых авторами исследований является совершенствование системы контроля операционных рисков кредитной организации с использованием технологий искусственного интеллекта, включающих разработку инструментария оценки в автоматизированном режиме уровня критичности влияния компетентности персонала на возникновение событий операционного риска. Для достижения поставленной цели была разработана искусственная нейронная сеть (ИНС) с использованием высокоуровневой библиотеки Keras на языке Python. В работе определен набор основных показателей, оказывающих наиболее существенное влияние на возможность возникновения операционного риска, связанного с действиями персонала кредитной организации. В статье приводятся результаты проверки сформированных наборов обучающих и тестовых данных с помощью пакетов прикладных программ, реализующих математические методы, позволяющие дать оценку непротиворечивости сформированных наборов данных. В работе приведены графики, показывающие результаты обучения и тестирования построенной искусственной нейросети. Полученные результаты являются новыми и могут позволить кредитным организациям в значительной степени повысить эффективность своей работы благодаря цифровизации решения задач контроля уровня операционного риска, связанного с действиями персонала.}, annote = { Статья посвящена вопросам контроля операционных рисков кредитной организации, связанных с действиями персонала. Контроль операционных рисков является важным аспектом деятельности кредитной организации. Несмотря на то, что Банк России в регламентирующих документах подробно описал набор действий, которые должны проводить банки для контроля операционных рисков, на практике кредитные организации испытывают серьезные трудности в процессе работы с операционным риском, связанным с действиями персонала. Это может объясняться, прежде всего, сложностью идентификации и формализации указанного риска. Одним из основных источников операционных рисков, связанных с действиями персонала, является недостаточная квалификация сотрудников. Это может привести к снижению доступности и качества услуг, предоставляемых кредитными организациями, а также к возможным финансовым и репутационным потерям. Целью проводимых авторами исследований является совершенствование системы контроля операционных рисков кредитной организации с использованием технологий искусственного интеллекта, включающих разработку инструментария оценки в автоматизированном режиме уровня критичности влияния компетентности персонала на возникновение событий операционного риска. Для достижения поставленной цели была разработана искусственная нейронная сеть (ИНС) с использованием высокоуровневой библиотеки Keras на языке Python. В работе определен набор основных показателей, оказывающих наиболее существенное влияние на возможность возникновения операционного риска, связанного с действиями персонала кредитной организации. В статье приводятся результаты проверки сформированных наборов обучающих и тестовых данных с помощью пакетов прикладных программ, реализующих математические методы, позволяющие дать оценку непротиворечивости сформированных наборов данных. В работе приведены графики, показывающие результаты обучения и тестирования построенной искусственной нейросети. Полученные результаты являются новыми и могут позволить кредитным организациям в значительной степени повысить эффективность своей работы благодаря цифровизации решения задач контроля уровня операционного риска, связанного с действиями персонала.} }