@ARTICLE{26583204_965613414_2024, author = {А. Ю. Варнухов}, keywords = {, бизнес-процессы, скрытые марковские модели, интеллектуальный анализ процессов, бизнес-анализ, предсказание, классификация, data-driven подход, информационные системыжурналы событий}, title = {Скрытая марковская модель: метод построения модели бизнес-процесса}, journal = {Бизнес-информатика}, year = {2024}, number = {3 Vol 18}, pages = {41-55}, url = {https://bijournal.hse.ru/2024--3 Vol 18/965613414.html}, publisher = {}, abstract = {      Все больше компаний под воздействием стремительного развития технологий (концепция Индустрия 4.0/5.0) охватывают процессы цифровой трансформации. Внедрение информационных систем обеспечивает возможность накопления большого объема данных о деятельности компании. Исследование такой информации расширяет возможности применения data-driven подхода к управлению бизнес-процессами (business process management, BPM). Обработка и изучение данных из журналов событий с помощью методов интеллектуального анализа процессов позволяет строить цифровые модели бизнес-процессов, которые оказываются полезным источником сведений при проведении работ по анализу, моделированию и реинжинирингу в рамках процессного подхода. В настоящей работе разрабатывается метод построения модели бизнес-процесса на основе скрытой марковской модели с учетом ограничений, налагаемых предметной областью. Применение скрытой марковской модели позволяет использовать аппарат теории вероятностей и математической статистики для анализа бизнес-процессов, а также решать задачи классификации и кластеризации. В статье описываются возможности data-driven подхода к управлению бизнес-процессами и демонстрируются примеры практического применения метода для решения бизнес-задач: построение графа зависимостей, который может быть использован для выявления расхождений между фактическим и ожидаемым исполнением, а также способ предсказания исхода бизнес-процесса на основе последовательности наблюдаемых событий.}, annote = {      Все больше компаний под воздействием стремительного развития технологий (концепция Индустрия 4.0/5.0) охватывают процессы цифровой трансформации. Внедрение информационных систем обеспечивает возможность накопления большого объема данных о деятельности компании. Исследование такой информации расширяет возможности применения data-driven подхода к управлению бизнес-процессами (business process management, BPM). Обработка и изучение данных из журналов событий с помощью методов интеллектуального анализа процессов позволяет строить цифровые модели бизнес-процессов, которые оказываются полезным источником сведений при проведении работ по анализу, моделированию и реинжинирингу в рамках процессного подхода. В настоящей работе разрабатывается метод построения модели бизнес-процесса на основе скрытой марковской модели с учетом ограничений, налагаемых предметной областью. Применение скрытой марковской модели позволяет использовать аппарат теории вероятностей и математической статистики для анализа бизнес-процессов, а также решать задачи классификации и кластеризации. В статье описываются возможности data-driven подхода к управлению бизнес-процессами и демонстрируются примеры практического применения метода для решения бизнес-задач: построение графа зависимостей, который может быть использован для выявления расхождений между фактическим и ожидаемым исполнением, а также способ предсказания исхода бизнес-процесса на основе последовательности наблюдаемых событий.} }