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Abstract

For practical, important tasks in the fields of economics and logistics, as well as in a number of
technical applications, it becomes necessary to solve the traveling salesman problem (TSP). Quite
often, the features of these problems lead to the traveling salesman problem in asymmetric formulation
(asymmetric traveling salesman problem, ATSP). Moreover, in some practical applications it is
desirable to obtain an exact solution. One of the known exact algorithms for solving the ATSP is
an algorithm that implements the well-known branch and bound method. The known experimental
estimates of its complexity on the average are exponential. However, this does not mean that for
small dimensions of the problem (currently, no more than 70—75), the expected time for solving the
individual problem is unacceptably high. The need to reduce the time for solving individual problems
dictated by practice is associated with the use of various modifications of this algorithm, of which a
modification that involves storing truncated matrices in the search decision tree is one of the most
effective. In this article, the authors rely on this modification. Other possible improvements in the time
efficiency of the software implementation of the branch and bound method are related, among other
things, to obtaining the initial approximation by heuristic algorithms. As a result, we get a combined
algorithm, in which, at the first stage, some heuristics works to obtain the initial solution, from which
the branch and bound method starts. This idea has been discussed for a long time, but the problem is
that to reduce time, such a heuristic algorithm is needed that delivers a solution close to optimal which

will be found quite fast. One of the possible solutions to this problem is the subject of this article.

'"This work was supported by the Russian Foundation for Basic Research (project
No. 16-07-00160 “Forecasting of time characteristics of efficient implementations of
the branch and bound method for the traveling salesman problem relying on charac-
teristics of random matrixes and identification of generated times distribution”)
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The subject of the research in this article is the choice of the best heuristic algorithm which, when
applied, leads to an increase in temporal efficiency in combination with the algorithm of the branch and
bound method, and an experimental study of its software implementation in order to obtain an average time
for solving individual problems. On the basis of the results obtained, recommendations are given on the
limiting dimensions of the problem that allow for an acceptable solution time, something which is of interest
in the practical application of this combined algorithm in the tasks of business informatics and logistics.
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experimental research.
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Introduction

he traveling salesman problem (TSP)
Tcan be formulated as follows: the sales-
man is to find the cheapest tour between
n cities, visiting each city once and only once
(except origin) and returning to the city of ori-
gin. We call a tour the sequence of all cities which
the salesman is to visit. Instead of ‘the travel cost,’
one can use distance, time or other indices. The
cost of travel is known for all pairs of cities. In
the mathematical field of graph theory, the TSP
is defined in the following way: what is a mini-
mal Hamiltonian cycle in a complete weighted
graph. This graph is represented by an adjacency
matrix C= (c,), which is called the cost matrix.
The diagonal elements of the adjacency matrix
are infinitely large numbers, because the graph of
the road net does not contain self-loops. In the
general case, the graph is directed. The Hamil-
tonian cycle of a graph we call a tour. The solu-
tion of the TSP is a tour with a minimum sum of
arc weight. In such a formulation, the Traveling
Salesman Problem belongs to the class of NP-
hard problems. That is why it relates to the intrac-
table problems of combinatorial optimization.

The TSP admits a variety of practical impor-
tant interpretations. For example: scheduling the
operation of equipment with reconfigurations,
optimization of crane operations, sequencing of
burning slots in the manufacture of chips [1]. The
cabling of computer networks, predicting protein
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function and representation of black and white
images by a continuous line without intersections
can also be reduced to the TSP [2].

Presented in 1963 [3], the first exact algorithm
for solving TSP was based on the branch and
bound (B&B) method [4]. A detailed description
of the earlier works of the Traveling Salesman
Problem can be found in [5]. The present meth-
ods and approaches to the TSP are described in
[6]. The issues of increasing the accuracy of the
lower estimate of the cost of the tour can be found
in article [7]. We do not give a description of the
classical branch and bound algorithm for the TSP
which can be found, for example, in [3; 8; 9].

Since a number of practical problems in the
field of business informatics, logistics and eco-
nomic optimization are reduced to the TSP,
there are an abundance of heuristic methods for
solving it. But this does not mean that there is no
need for exact solutions to the problem. Conse-
quently, one may ask:

4+ what is the biggest dimension value of the
problem that can be solved exactly within an
acceptable time?

4+ how can we increase this dimension value by
the use of a modified exact algorithm with better
time efficiency?

Since the 1960s, researchers have used a heu-
ristic algorithm for finding optimal or near-opti-
mal solutions (tours) for the individual TSP and
then a start branch and bound algorithm with the
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initial solution. It is intuitively clear that such an
approach should reduce the number of vertices
of the generated decision tree and therefore the
time of finding the exact solution. In this case,
we get a combined algorithm which contains a
heuristic algorithm and B&B. The present arti-
cle is devoted to the description and the compu-
tational analysis of the combined algorithm with
the Linn—Kernigan method as a heuristic part.

1. Definition of the task

We need to find a heuristic algorithm for the
asymmetric traveling salesman problem that
can help to reduce the total time of solving TSP
by starting the branch and bound algorithm
with the initial solution, hereinafter called the
precomputed tour.

We introduce the following notations:

n— dimension of the problem (number of verti-
ces of the complete graph);

C= (c,.j) — cost matrix of the individual asym-
metric traveling salesman problem that is an adja-
cency matrix of a directed graph without loops;

T, — cost of a precomputed tour which is found
by a heuristic algorithm;

t,,(C, T)) — the running time of the software
implementation of the branch and bound algo-
rithm (in a certain hardware configuration) for
the individual TSP, which is defined by cost
matrix C with a precomputed tour of cost 7;

t,(C) — the running time of a heuristic algo-
rithm;

N,(C) — the number of vertices of the search
decision tree generated by the classical branch and
bound algorithm (without a precomputed tour);

N,(C) — the number of vertices of the search
decision tree generated by the branch and bound
algorithm with the precomputed optimal tour;

fyp(n) — sample average running time for
software implementation of the classical branch
and bound algorithm without a precomputed
tour when the sample consists of individual
problems with the same dimension #;
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t45, (1) — sample average running time for soft-
ware implementation of the branch and bound
algorithm with a precomputed tour when the
sample consists of individual problems with the
same dimension #;

1, (n) — sample average running time for soft-
ware implementation of the heuristic algo-
rithm.

Our goal is to find such a heuristic algorithm
that delivers the initial tour that decreases the
running time of the B&B so that

1y (C.T,)+ 1, (C) <t (C, 0) (1)

for most cost matrices C.

Since the branch and bound algorithm is
highly sensitive to the features of individual
problems, condition (1) does not mean the time
reduction for every individual task. Thereafter,
we apply the sample average:

Ty (1) +1p (1) < Typy (n). (2)

It is also of interest to find the threshold value
N of the dimension of the problem such that a
combined algorithm is more effective than the
classical B&B when the TSP dimension # is more
than N. In order to predict the time efficiency;,
it is also necessary to approximate a dependence
of the average running time on the dimension of
the TSP.

2. How to reduce
the running time of the branch
and bound algorithm

In order to decrease the running time of algo-
rithms that implement the idea of the branch
and bound method for solving the traveling
salesman problem, various approaches are
proposed. Some of them use storing reduced
matrices in the nodes of the search decision
tree [10]. There are also several combinations
of exact and heuristic algorithms [11—13].

The paper [10] presents an experimental
study of the impact of additional memory allo-
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cation for the storage of truncated cost matri-
ces in the nodes of the search decision tree in
the range of TSP of dimension from 25 to 45.
Table I presents a forecast based on the experi-
mental data [10]. This means that the software
implementation of the algorithm with the stor-
ing matrices can be effectively used for finding
the exact solution of the TSP of a dimension
that is not more than 70 at an available RAM
of 16 GB with the expected average calcula-
tion time of modern personal computers on the
order of magnitude of one minute.

In developing a combination of the branch
and bound algorithm and the heuristic algo-
rithms that deliver a precomputed tour, we will
further use an implementation that does not
include the storage of truncated cost matrices
at the vertices of the search decision tree.

The authors of the study [12] sought to level
out the shortcomings of the branch and bound
algorithm with heuristic algorithms and tech-
niques for parallelizing program flows. How-
ever, they also pointed out that they clearly
understood the fact that the results obtained
are not reliable and had to be treated with great
care.

3. The influence
of the quality of a precomputed tour
on the number of generated vertices

In the classical branch and bound algorithm
for solving the TSP, there is no opportunity to
begin cutting out the subtrees of the search deci-
sion tree until a tour is found. This is because
the classical algorithm does not assume the
presence of any tour at the time of the initial
launch. In view of the particular nature of the
problem, the decision tree can seriously grow
until the first tour is found. Using a precom-
puted tour (which is known before the B&B
algorithm is launched) can reduce the size of
the search decision tree. Under the condition
that a precomputed tour is close to the optimal
one, a combined approach allows for less time
to be spent on finding an optimal tour. That
is because there is no need to create and visit
unfavorable vertices of the search decision tree.
The amount of additional memory required
also decreases, since there is no need to store
unfavorable vertices of the search tree.

Thus, the combined approach aims at reduc-
ing both the running time and the amount of
memory required. However, the implementa-

Table 1.

Resource characteristics forecast

Prediction Prediction of Prediction
of optimal tour optimal tour Time ratio of the average
Dimension calculation time calculation time rediction amount
without additional with additional P of additional
memory memory memory required
45 1s 02s 5 30.71 MB
54 7s 1s 7 172.3 MB
70 11.7 min 1 min 11.7 12.47 GB
80 25h 10 min 15 136.37 GB
88 196 h 1h 19.6 924.26 GB
102 29.5 days 1 day 295 25.69 TB
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tion of the combined algorithm causes some
problems. Obviously, the closer a precomputed
tour is to an exact solution, the less time it takes
to find the optimal solution by B&B. On the
other hand, a precomputed tour must be found
quickly. This means that the running time ofthe
classical branch and bound algorithm should at
least be no more than the total running time
of the heuristic algorithm and the branch and
bound algorithm with the precomputed tour.
In other words, the use of a precomputed tour
should be justified and rational.

According to [14], if a precomputed tour
is optimal, then the search decision tree size
is reduced by approximately 40%. The aver-
age number of generated vertices of the
search decision tree for problems (of differ-
ent dimensions), obtained experimentally in
[14] is presented in 7able 2. The characteristic
n=(1-N,/N,) shows the decrease of the size
of the search decision tree by percentage if the
precomputed tour for the branch and bound
algorithm is optimal.

However, the sensitivity of the Branch and
Bound algorithm to the quality of a precom-
puted tour is sufficiently high: if a precomputed
tour is more than 5% larger than the optimal
one, then, as was shown in [14], the search
decision tree cannot be significantly reduced.

Table 2.
The influence
of the precomputed tour
on the number of generated vertices

n n

35 38%
40 38%
45 39%

4. Heuristic algorithms
for calculating a precomputed tour

Heuristic algorithms are algorithms which do
not necessarily deliver an exact solution. How-
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ever, the solutions which can be found by these
algorithms are usually quite close to an optimal
one; moreover, they are available in a “reason-
able” time [15]. Unlike exact algorithms, heu-
ristic algorithms are usually fairly simple to
implement, and they work faster. All heuris-
tic algorithms can be divided into the follow-
ing three types:

+ greedy [16];
4+ swarm intelligence [17—19];
4+ improvement [20, 21].

In addition, there are many different algo-
rithms that are designed to solve particu-
lar cases of the TSP (for example, the metric
traveling salesman problem [22]).

Preliminary analysis of the literature sources
[14, 23, 24] allows us to conclude that repre-
sentatives of greedy and swarm intelligence
heuristic algorithms cannot provide a suf-
ficiently high-quality solution for the time
required in our formulation of the problem.
Therefore, the use of the initial tours obtained
by these algorithms is not reasonable. The sit-
uation is different with a lot of heuristic algo-
rithms that improve solutions.

In 1973, S. Lin and B. Kernigan presented an
effective heuristic algorithm for the traveling
salesman problem (the Lin—Kernighan algo-
rithm) [25]. It is based on the idea of an itera-
tive improvement of a randomly found tour. As
shown by experimental results, this algorithm
often even finds globally optimal solutions. At
the same time, the complexity of the algorithm
is approximately O(n“) [25].

Later, in 2000, K. Helsgaun proposed a mod-
ified implementation of the algorithm (the
Lin—Kernighan—Helsgaun algorithm) [26].
This algorithm often provides an optimal solu-
tion in an acceptable time, even for problems
of large dimension.

The algorithms considered are designed to
solve the symmetric traveling salesman prob-
lem. However, using the improved method
described in paper [27], any asymmetric trave-
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ling salesman problem (dimension #) can be
reduced to the symmetric traveling salesman
problem (dimension 2#). Unfortunately, this
transformation also affects the time of solving
the asymmetric traveling salesman problem by
the Lin—Kernighan—Helsgaun algorithm.

The main idea of the Lin—Kernighan—
Helsgaun algorithm is to transform a feasible
solution by the replacement of some set of its
arcs to another, which delivers a better feasible
solution. The process goes on until there is an
existing set to replace it with. All details of the
algorithm are given in [26].

The efficiency of the Lin—Kernigan—Hels-
gaun algorithm is achieved, first of all, due to
the effective strategy of the search sets of arcs
described above. The search is based on the
restriction of 5-opt replacements inside the set of
possible candidates [26].

The author of [28] attempted to develop an
algorithm that provides an optimal or very
close to optimal solution relatively quickly.
However, he did not pay attention to the com-
plexity of the implementation, and as a result,
the last software implementation presented by
the author consisted of about 10,000 lines of
source code [28].

5. Combined algorithm
and experimental results

To analyze the combination of the branch
and bound algorithm with a heuristic Lin—
Kernigan—Helsgaun algorithm, an experi-
mental study of asymmetric traveling salesman
problems of dimension 35, 37, 40, 43, and 45
was carried out. The sample of TSP’s of the
same dimension consisted of 100,000 individ-
ual problems (for each dimension value).

The experiments were carried out on a personal
computer with the following characteristics:
<& processor: Intel i7 8700K 4700 MHz;
$ RAM: Corsair Vengeance LPX CMK
32GX4M2B3466C16R DDR4 3466 MHz
32 GB;
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& motherboard: ASRock Fatallty Z370
Gaming K6;
<& operating system: Arch with kernel version
4.14.13-1-ARCH.

To minimize operating system noise, back-
ground processes (for example, firewalls)
unnecessary for the research were disabled,
and the distribution did not contain the com-
ponents of the graphical interface (we used
command line interface instead). Moreover,
swapping was disabled, so that the speed of the
HDD did not affect the running time of the
implementation of the algorithm.

The algorithms was implemented in C++
and compiled into an executable program
using the compiler gcc 7.2.1 20171224

The combined algorithm was implemented
in C++ and compiled into an executable pro-
gram using the compiler gcc 7.2.1 20171224.

We introduce the notation f7,,,(n), which
means the average running time of the soft-
ware implementation of the Lin—Kernighan—
Helsgaun algorithm where »n denotes the
dimension of TSP.

Average, minimal and maximal running time
of the B&B algorithm implementation without
a precomputed tour are presented in the first
part of Table 3 (T4 (1), Ty (1), Ty, (n) corre-
spondingly, the sample size is 100,000).

The same characteristics of the imple-
mentation of the combined algorithm with a
precomputed tour calculated by the Lin—Ker-
nighan—Helsgaun algorithm are Qenoted as
[ (”)+t_LkH: ;351 (n)JrlTLKH’ ;BBl (n)+tLKH' These
figures are presented in the second part of
Table 3 (the sample size is 100,000).

The experimental results obtained do not
show such a significant reduction of the run-
ning time of the implementation of B&B com-
bined with Lin—Kernighan—Helsgaun algo-
rithm as can be expected based on 7able 2. The
reduction of the number of generated vertices
of the decision tree by 38% does not provide
a similar decrease of the running time of the
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Table 3.
Experimental results
n t_BBO (n) ZRBO (n) iBBO (n) t_BBl (n)+t_LKH thBl (n)+;LKH ;BBI (n)+2LKH
US us us us s us
35 78 009 312 4 866 390 84 080 3629 4200 069
37 128 072 357 63 857 740 133 791 3691 39814733
40 261729 435 34998 093 264 468 3840 26 352 357
43 | 539085 504 66 511234 531 160 5127 58208 012
45 859 599 578 123 629 945 831424 6232 78 427 649

implementation of B&B. The reason is that
calculation of the lower bounds of the verti-
ces of the decision tree takes time, but when
the estimates are greater than the value of the
precomputed tour no new vertices are created.
In this case, the running time is spent without
the creation of a new vertex of the search deci-
sion tree.

Approximation of the obtained experimental
results by the method of least squares can be
represented as

Tyso (1) =17.783-€"2”", R2=10.9999, (3)

t_Bm (f’l) +t_LKH(n) =27.552 . %2290,
R>=0.9999. (4)

The abscissa of the intersection point of these
exponents is close to the integer point n = 43.
Taking into account (3) and (4), we concluded
that when the dimension of the TSP is more
than n = 43, the combination of the branch
and bound algorithm with the Lin—Kernigan—
Helsgaun algorithm delivers an exact solution
faster (on average) than the classical B&B. In
other words, the sample average running time
of B&B with the Lin—Kernigan—Helsgaun
algorithm is less than the sample average run-
ning time of B&B without an initial tour. The
formula (4) provides the values of the dimen-
sion of TSP which can be solved using a com-

bined algorithm in time 7 _ or less. In this case,
the largest dimension of the TSP is the solution
of the equation

27.552- 0= (5)

For example, when ¢ = 6-10° microseconds
(i.e. 5 minutes), a combined algorithm can
deliver an exact solution of TSP of dimension
up to n = 73. However, we should not forget
that the method is very sensitive to the features
of the individual problems, and the amount of
running time of some TSP of dimension 73 can
be significantly larger than 7= 6-10° micro-
seconds. Moreover, the requirement for addi-
tional memory can be significant.

The authors are aware that the accuracy of
the extrapolation obtained is not high, and we
have a fairly rough approximation. In general,
we hope that when the dimension of the TSP is
more than 70—75, the combined algorithm can
solve the TSP significantly faster (on average),
but we do not state that it is true for all individ-
ual tasks.

Conclusion

Thus, on the basis of the experimental
research we conducted, the following conclu-
sions can be made:

4+ according to the calculated trend, when
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the dimension of the TSP is more than n = 43,
the combined algorithm of B&B and the Lin—
Kernigan—Helsgaun algorithm works faster
than the classical branch and bound algorithm
for the asymmetric traveling salesman problem
(on average);

4+ the branch and bound algorithm with a
precomputed tour does not provide a solution
to the traveling salesman problem in polyno-
mial time, however the use of an initial tour
reduces the coefficient at # in the exponent in

(3) by 4.4%, which is also a significant result;

4+ it is not efficient to use greedy or swarm
intelligence heuristic algorithms for finding an
initial tour, because the total time of the oper-
ation of the branch and bound algorithm and
those heuristic algorithms is much more than
the classical branch and bound algorithm
(without a precomputed tour).

The authors see the further development of
the study in a more detailed analysis of the dis-

tributions of running time of software implementations of the algorithms. m
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