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Abstract

The increasing flow of available market information, the development of methods of machine 
learning, artificial intelligence and the limited capabilities of traditional methods of real estate valuation 
are leading to a significant increase of researchers’ interest in real estate valuation by applying methods 
based on decision trees. At the same time, the distribution of real estate prices is well approximated 
by a lognormal distribution. Therefore, traditional methods overestimate the predicted values in the 
region below the average of the available data set and underestimate the predicted values in the region 
above the average. This article shows the reasons for these features and proposes an adaptive random 
forest algorithm which corrects the results of the basic algorithm prediction by revising the bias of 
these predicted values. The results were tested on the real estate offer prices in St. Petersburg.
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Introduction

The number of publications devoted 
to non-traditional methods of real 
estate valuation, focused on large 

samples of data, and, in particular, methods of 
machine learning, has significantly increased 
recently.

The interest of researchers in this topic is 
understandable: the changed information 
environment and the wide choice of spe-
cialized application packages allow us to 
consider what was not previously available 
from evaluation methods; see for example 
[1–6]. The method of hedonic pricing, lin-
ear regression models, logarithmic or par-
tial-logarithmic dependence are considered 
in [7–10]. Data mining techniques, such as 
neural networks [11–15] and Support Vector 
Machines [16] are proposed, the results of 
such methods as decision trees, naive Bayes-
ian classifier and ensemble algorithm Ada-
Boost are compared [17]. This paper dis-
cusses the prediction biases that arise from 
the application of decision tree based meth-
ods in real estate valuation and proposes an 
algorithm to correct for these biases. Inter-
est in this group of methods is confirmed by 
[18–21]. Researchers are turning to machine 
learning methods, in particular decision tree 
based methods, under conditions where there 
is an extensive set of input data and there are 
no a priori assumptions about the form of 
the function F( ), describing the dependence  
V = F (x

1
, x

2
, …, x

n
) between the output or 

dependent variable V, which is usually the 
price, and predictors x

1
, x

2
, …, x

n
, which are 

the price-forming factors.

The advantage of decision tree based meth-
ods is that knowledge of the type of function F( )  
is not required. However, this does not mean 
that the specific properties of real estate 
price distributions do not affect the results of 
such algorithms. The method of construct-
ing a single decision tree consists in suc-

cessive decomposition of the entire predic-
tor domain into subsets of smaller size. Each 
element of such a subset is assigned a value 
of the arithmetic average of the values of the 
dependent variable on such a subset. This is 
an iterative procedure, known as recursive 
decomposition:

1. At each step, the datasets are divided into 
subsets.

2. Each of the subsets obtained on the previ-
ous step is, in turn, divided. In general, there 
will be a decomposition of the space of inde-
pendent variables (predictors) x

1
, x

2
, …, x

n
 into 

some number (for example, m) of non-inter-
secting domains R

1
, R

2
, …, R

m
.

3. Outcome variable V values predicted 
as the same value for all observations in the 
domain R

j
, j = 1, 2, …, m. This value is equal 

to the average of all responses that fall into R
j 
. 

At each step, dividing provides a minimum of 
root mean square deviations of RSS (residual 
sum of squares):

             ,

where  is the response average value of the 
training observations from the set R

j 
.

From the computational point of view, 
it is not feasible to consider all combina-
tions of decompositions to the greatest pos-
sible depth. Therefore, the basic principle 
of “greedy” algorithms is used: the optimal 
division (in terms of RSS minimum) is deter-
mined only at the current step. The depth of 
decomposition can be as large as the volume 
of data allows. Possible rules for stopping: by 
the number of steps, by the number of ele-
ments in subsets (tree sheets), by reaching a 
pre-determined improvement in the result at 
the next step. 

The model of interest is division with result-
ing sets R

1
, R

2
, …, R

m
 containing a “sufficiently 

large number of elements” and the response 
values standard deviation being not too large 
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from its average value within the predeter-
mined accuracy in each set.

1. Methodology

In the problems of real estate valuation, the 
application of the decision tree method gen-
erates additional opportunity. It allows you to 
split a set of objects into subsets with less vari-
ance, with more homogeneous objects within 
each of them. They can be studied separately. 
It should be noted that decision tree based 
algorithms can operate with both real and fac-
tor predictors. 

Thus, the advantages of using decision trees 
are:

1. Clear model interpretation.

2. Such an algorithm reflects people’s deci-
sion-making process.

3. For one decision tree there is a visual 
graphical representation.

4. Decision trees easily operate with factor 
and rank variables.

The disadvantage of such algorithms is low 
prediction accuracy; dispersion within each 
decomposition set is not small enough – on 
leaves). This drawback can be eliminated by 
applying ensemble decision tree based meth-
ods, e.g. random forest, gradient or stochas-
tic boosting. Such algorithms do not produce 
interpretable results, but they allow you to 
analyze the importance of predictors in pre-
dicting the response and allow you to operate 
with factor variables. This paper considers the 
random forest method.

Decision tree based algorithms should be 
applied for real estate evaluation taking into 
account the peculiarities of the target varia-
ble V, since there are reasons to assume that it 
is a lognormally random variable. Apparently, 
Aichinson and Brown [22] first pointed out 
this fact, and later this observation was con-
firmed in research such as [4]. Research [23, 

24] gives a theoretical substantiation of the 
reasons for this kind of distribution appear-
ance. 

A random variable V is called log-normally 
distributed with parameters  and , if the 
random variable ln(V) is normally distributed 
with the same parameters. In this case math

ematical expectation , median

, and mode .  
The fraction of empirical distribution val-
ues to the left of E(V) (less than the math-
ematical expectation) can be estimated as

 , 

where  is a Laplace function. The fraction 
of such values depends on the standard devia-
tion and increases with its growth.

Thus, if we consider the hypothesis that 
the results of decision tree based algorithms 
prediction are also log-normally distrib-
uted, and moreover, form a joint lognormal 
distribution with the observed values in the 
sense of a two-dimensional normal distri-
bution of logarithms, then it becomes clear 
that decision tree based methods are bet-
ter applied not to the prices of real estate 
objects, but to their logarithms. Since 
at each step the standard deviations of 
RSS from the mean values in the subsets  
R

1
, R

2
, …, R

m
, are minimized, within which 

the principle of lognormal distribution of 
the dependent variable V, can be preserved, 
then in case of ensemble algorithms based 
on decision trees the prediction of results on 
the test set will be quite accurate only in the 
domain of values close to the average val-
ues of the responses. In the area of values 
below the average, the predictions of such 
algorithms will be overestimated, above the 
average – underestimated, increasing as we 
approach the boundaries of empirical distri-
butions. An appropriate diagram showing the 
relationship between the true and predicted 
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values will, with acceptable prediction accu-
racy, show scattering clouds extending along 
some straight line, somewhat displaced rel-
ative to the bisector of the first coordinate 
angle by rotating around a point, with the 
coordinates of the average response value 
and the average prediction value. In this case 
most of the results will be overestimated, 
because in a lognormal distribution most of 
the possible values are to the left of the aver-
age (less than the average). In this case, for 
ln(V), which has a normal distribution, the 
areas of over- and under-prediction will be 
about the same by the number of elements. 
In the described approach, the prediction 
results remain displaced relative to the true 
values. This is observed, for example, in [20].

In this paper, we propose to apply an adap-
tive method based on the correction of the 
prediction results of the ensemble algorithm 
random forest. Adaptation consists of the 
following procedure. The set of initial data is 
divided into three parts: training, validation 
and test. The training procedure (selection of 
parameters) of the random forest algorithm 
is performed on the first set. Next, we ana-
lyze the dependence of the predicted val-
ues for the validation set on their true val-
ues. The prediction is corrected by rotating 
the scattering cloud in coordinates (response 
value is a prediction) by some angle, which 
removes the displacement from the bisector 
of the first coordinate angle and recalculates 
the predicted values. At the third step, the 
quality of the predictions of the random for-
est algorithm, taking into account the cor-
rection, is checked on the test set. 

It should be noted that in any case the esti-
mate of market value will be determined not 
as the most likely price, but as the average 
price (if the algorithm was applied to the 
original prices) or the geometric mean price 
(if the algorithm was applied to the loga-
rithms of prices). 

2. Applying the technique 
to real market data

Approbation of the procedure we have 
described was carried out on the following 
example. Consider the prices for second-
ary residential real estate in the mass-mar-
ket sector in St. Petersburg in February 2017 
taken from an open source (the advertising 
publication Real Estate Bulletin No. 1765, 
February 2017, not indexed in scientomet-
ric databases), the total number of records 
in the dataset after removing incorrect ads 
was 4294. The random forest method will be 
used for the predictive model. The depend-
ent (target) variable is the price per square 
meter of secondary residential real estate in 
the mass-market sector in St. Petersburg in 
February 2017 or its logarithm. The predic-
tors are:

 ♦ the number of rooms in the apartment – a 
quantitative variable

 ♦ administrative area of the location – a fac-
tor variable

 ♦ floor – a factor variable

 ♦ number of floors in the house – a factor vari-
able

 ♦ living space – a quantitative variable

 ♦ total area – a quantitative variable 

 ♦ subway accessibility – a binary variable

 ♦ house type – a factor variable

 ♦ number of bathrooms, their type – a factor 
variable.

The calculations were carried out in the open 
source software R. First of all, let us pay atten-
tion to the asymmetric distribution of prices 
(Fig. 1).

The verification of the null hypothesis 
about following the empirical distribution of 
prices for one m2 logarithmically normal dis-
tribution is associated with certain difficul-
ties. The sample size is 4294. As was rightly 
noted in [25], most of the common and fre-
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quently used criteria do not work for sam-
ples of the order of even one thousand obser-
vations, since their statistics significantly 
depend on the sample size. Therefore, the 
question arises of finding, in addition to 
the visual correspondence shown in Fig. 1, 
additional arguments in favor of a particu-
lar type of distribution. In this context, we 
note the work [26], in which it is proposed to 
study the relations between the coefficient of 
asymmetry and the kurtosis of the observed 
sample in order to advance the null hypoth-
esis about a particular type of distribution. In 
this paper, the method proposed in [27] was 
used to test the corresponding hypotheses. 
The obtained p-value values provide grounds 
to assume that the observed sample follows a 
logarithmically normal law; therefore there 
are grounds to solve the predictive problem 
in logarithms.

Let us consider sequentially what predic-
tions are obtained by one decision tree, by the 
random forest algorithm, and then carry out a 
procedure for correcting the resulting predic-
tion. For this purpose a training set consisting 
of 2000 records is formed from the initial sam-
ple (volume 4294 records) by random selec-
tion, as well as a validation set consisting of 
1000 records, and the remaining 1294 records 

form a test set where the model quality is eval-
uated. 

Trained on a random sample of 2000 records, 
the tree model gives a price prediction diagram 
(decision tree cut to 11 terminal nodes), shown 
in the Fig. 2. 

Fig. 1. Prices distribution (left) and their logarithms (right)  
of secondary residential real estate in St. Petersburg in February 2017. 
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by a single decision tree.
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Such decomposition in the evaluation tasks 
is not meaningless, because it allows us to 
form groups with a different set of pricing fac-
tors in which a group-specific average value 
and the standard deviation of the observed 
values from the group average are expected. 
Predictors that had a significant influence on 
the formation of the tree were:

 ♦ administrative district;

 ♦ building type;

 ♦ number of floors in the building;

 ♦ the number and type of bathrooms;

 ♦ total area;

 ♦ living area;

 ♦ metro accessibility;

 ♦ floor.

The quality of the predictions shown in 
Fig. 2 is unsatisfactory – too large ranges of 

250
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0                        50                    100                   150                   200                   250 

the values of prices  
from the initial test set

the prices predicted  
by the “random forest” algorithm

bisector of the first  
coordinate angle

Fig. 3. Diagram of predictions  
on the test set by the “random forest” algorithm. 

values are predicted to have the same price. 
(The ideal would be the predictions in Fig. 2  
near the bisector of the first coordinate 
angle). An effective way to deal with the same 
predictions is the random forest algorithm. 
This algirothm builds a large number of 
trees and averages the results for each object.  
Figure 3 shows the result of the random forest 
algorithm for predicting the price per square 
meter of secondary residential real estate for 
the test set. Each tree in the algorithm was 
built based on 4 predictors, the total number 
of trees – 200. 

A similar figure, with a characteristic dis-
placement of the predictions, can be seen in 
the article [20] on algorithms based on deci-
sion trees when analyzing the real estate mar-
ket in Ankara. In Fig. 3 we can see the scat-
ter of the predictions, characteristic of the 
joint lognormal distribution, that increases 
with rising price, and the fact that most of the 
predictions (above the bisector) appear to be 
overestimated, which is to be expected, given 
the asymmetric distribution of prices in the 
original set. Also note that the predictions 
thus obtained are predictions of average val-
ues (mathematical expectations in subsets), 
and not the market value as the most likely 
price. The estimate of market value is, in fact, 
somewhat lower. 

Let’s apply the adaptive random forest 
method to the logarithms of prices. 

Figure 4 shows the result of the random forest 
algorithm for predicting the logarithm of the 
price per square meter of secondary residential 
property (the number of trees – 200, a random 
selection of 4 predictors on each tree, a train-
ing random sample of 2000 records).

Figure 4 shows that the areas of over- and 
under-prediction are approximately the same, 
but the axis of the scattering cloud has a char-
acteristic trend that does not coincide with 
the bisector of the first coordinate angle. Note 
that the predictions obtained by potentiating 
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the results are predictions of the median val-
ues (geometric averages in the subsets R

1
, R

2
, 

..., R
21

), and not the market value as the most 
likely price. The estimate of market value in 
this case is somewhat lower. 

The results of the predictions of the random 
forest algorithm can be corrected by simple 
transformations of the results. Using the lin-
ear regression method, we determine the linear 
trend of the scattering cloud shown in Fig. 4. 
The result is shown in the Fig. 5.

In this example, the trend line equation is 

         , (1)

where ln(V) is the observed value of the loga-
rithm of the price;

ln( ) is the predicted value of the logarithm of 
the price. 

The statistical characteristics of the obtained 
trend line: p-value of Student’s test for model 

Fig. 5. Diagram of predictions  
on the test set by the “random forest” algorithm. 
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coefficients and Fisher’s criterion for the cre-
ated model is machine zero. The standard error 
is 0.086, i.e., the parameter spread with prob-
ability 0.99 is in the interval ~ +/–26%. The 
relatively low value of R2 = 0.5053 does not 
spoil the situation, because there is no strictly 
linear relationship between ln( ) and ln(V) in 
this case, our expectations are related to the 
multivariate normal distribution of lln( ) and  
ln(V), for which the linear trend coincides 
with the major axis of the ellipse of scattering 
(see more about multidimensional logarith-
mic normal distribution [27]). Equation (1) 
corresponds to the line shown in bold black in  
Fig. 5. For the scattering cloud shown in  
Fig. 5, the value of the standard deviation of 
the observed values from the predicted values 
is 0.168. It remains for us to correct the predic-
tions shown in Figs. 3, 4, and 5. For this pur-
pose, all values are centered (horizontal and 
vertical averages are subtracted). The scatter-
plot is rotated counterclockwise in the new 
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Fig. 4. Diagram of predictions  
on the test set by the “random forest” algorithm.
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coordinate system and the angle is the differ-
ence between the line given by equation (1) 
(Fig. 5, bold black) and the bisector of the 
first coordinate angle. Such angle  is equal to 

. The result of the rotation is 

shown in Fig. 6. 

For the scattering cloud shown in Fig. 6, the 
value of the standard deviation of the observed 
values from the predicted values is 0.118. Thus, 
the correction performed gives a better predic-
tion quality.

Now we have two vectors of values: a vec-
tor of predictions of centered price logarithms 
on the test set (we denote it by) and a vector 
of corrected predictions of centered price loga-
rithms (we denote it by y*). 

In Fig. 7, the horizontal axis shows the val-
ues of the components of the vector y*, the 
vertical shows the values of the vector com-
ponents y+.

Fig. 6. Corrected predictions on the test set  
by the “random forest” algorithm. 
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Fig. 7. Correlation of predicted  
and corrected values. 
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The set shown in Fig. 7 has a linear trend of 
the following form y+ =   y*, which is easily 
determined by using the library function lm of 
the statistical package R. In this example we get 
y+ = 1.388. Now we firstly apply sequentially 
the random forest model already obtained on 
the training sample and then the prediction 
correction obtained on the validation set to the 
test set (1294 records).

Figure 8 shows predictions of centered price 
logarithms on the verifying set (the random 
forest model obtained on the training set was 
applied). 

Figure 9 shows corrected predictions of cen-
tered price logarithms on the verifying set 
(using the random forest model obtained on 
the training set and the correction obtained on 
the test set). 

Here are the necessary formulas and sequence 
of operations:

1.0

0.5

0.0

-0.5

-1.0

-1.0                         -0.5                           0.0                           0.5                          1.0



BUSINESS INFORMATICS   Vol. 16  No. 4 – 2022

15

Fig. 8. The correlation between  
the observed values of centered logarithms 

 of prices and their predicted values  
by the random forest algorithm.

Fig. 9. The correlation of observed values  
of centered logarithms of prices and their 

 predicted values by the random forest algorithm  
and corrected by the formula  

obtained on the test set. 

observed values of centered 
logarithms of prices

1. Let 

are observed values of the loga-

rithms of prices with the average , 

 are pre-

dicted values on the training set (test, verifying, 

m – can take different values) values of price 

logarithms with the average . Then

         ,   and 

,

where rotation angle

(under the arctangent sign is the tangent of 
the inclination angle of the linear trend of 
the scattering cloud). See Figs. 4, 5, 6.

2. We compare the predicted and corrected 
values of the centered logarithms on the vali-
dation sample (Fig. 7), determine the angular 
coefficient  of the trend y+ =   y*.

3. The predicted and corrected value of y+ on 
the test sample is compared with the observed 
values of centered logarithms of prices x*  
(Figs. 8, 9). For the dataset under study, the 
most significant predictors (when assessing  
relative importance using the method of  
features permutation) were the city district, the 
type of building, the number of floors in the 
house and the total floor area of the premises. 
The least important were: the floor location of 
the premises, the proximity of the subway, the 
number of rooms. 

Conclusion

1. Algorithms based on decision trees pre-
dict average values if applied for prices) 
and average values if applied for logarithms 
of prices), rather than the most likely val-
ues. The market value estimate predicted by 

predicted values
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them is somewhat higher than the market 
value estimate by the most probable value. 

2. Due to the lognormal distributions of 
prices in the original datasets, the predictions 
constructed using methods based on decision 
trees require correction. The procedure pro-
posed in this paper allows for such a correc-
tion using double cross-validation when a val-
idation subset of the initial data set is selected 
on which the adaptation of the algorithm is 
carried out. Then the results are evaluated on 

the test dataset. The approbation conducted 
showed the effectiveness of the proposed 
approach.
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