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that kurtosis was very sensitive to “outliers” in the data, which made it difficult to make assumptions 
about the distribution of model residuals. The approach considered in this paper based on the heavy-
tailedness measure made it possible to justify the choice of degrees of freedom of the t-distribution for 
the model residuals to explain the fat tails in financial data. It was found that GARCH(1,1)-models 
with t(5)-distribution in the residuals are common.
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Introduction

As is known, many financial time series are 
characterized by certain regularities: asset 
returns are weakly stationary, volatility clus-

tering is observed, distribution normality is rejected 
in favor of a distribution with thick tails, etc. [1]. To 
describe and forecast the processes with such proper-
ties, wide use is made of the class of models with con-
ditional heteroscedasticity (ARCH, GARCH models) 
proposed by Angle [2] and Bollerslev [3] and their 
modifications. An important feature when working 
with financial data which we would like to consider 
in detail in this article is the fact that the residuals 
of ARCH/GARCH models have fatter tails than the 
tails of a normal distribution due to the large number 
of “outliers” in the data, and this fact requires more 
detailed study. To account for fat tails in economet-
ric practice, several alternative distributions had been 
proposed: Student’s t-distribution [3, 4], generalized 
error distribution (GED) [5, 6], Student’s skew t-dis-
tribution [7], etc. Note that the possibility of choosing 
the Student’s t-distribution and GED-distribution 
for estimating the GARCH model is implemented in 
econometric packages (for example, Stata16). This is 
of practical interest in substantiating the choice of the 
appropriate distribution in modeling and forecasting. 
The proposed distributions differ in properties; there-
fore, these distributions will not equally well charac-
terize the “thickness” of the tails of the distribution. 
Thus, the research problem is how to choose the type 
of distribution that best characterizes the heavy-tailed 
distribution. The correct specification of the GARCH 
model, taking into account heavy tails, allows us to 
get more accurate forecasts of returns and the maxi-

mum profit for investors. This fact determines the rel-
evance of the study.

The main goal of this paper is to analyze the behav-
ior of the quantile-based measure of tailedness in rela-
tion to the choice of degrees of freedom of the Student’s 
t-distribution in the residuals of the GARCH model. 
Note that the measures of heavy-tailedness are widely 
discussed in foreign literature and are an alternative ap-
proach to choosing the number of degrees of freedom 
of the t-distribution. Let us check how applicable these 
measures are in econometric practice for analyzing  
financial data and compare them with the classical ap-
proach of choosing the degree of freedom of the t-distri-
bution based on a comparison of maximum likelihood 
estimates.

1. Measurement of heavy-tailedness

In this section, we will analyze what approaches are 
used for measuring the “thickness” of the tail of the 
distribution. The heavy-tailedness of a distribution for 
a random variable (r.v.) X is usually understood as 

                              ,  (1)

where С,  > 0 are the constants, f(x)  g(x) means:

                                . 

The parameter  is commonly called the tail index of 
the distribution X. It characterizes the decay rate of the 
tails of the power-law distribution (1) and the probabili-
ty of observing extreme values of the r.v. As the probabil-
ity mass in the tails increases, the tail index parameters 
decrease, and vice versa [8].
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Note that in the literature, heavy-tailed distributions 
are divided into three subclasses: fat-tailed distributions, 
long-tailed distributions, and subexponential distribu-
tions [9, 10]. A fat tail distribution exhibits more skew-
ness or kurtosis than a normal distribution. The terms 
“fat tail” and “heavy tail” are often used as synonyms 
in financial analysis papers. In our work, we will use the 
term “heavy tail”, and we will consider the “fat tails” 
of the distribution as a special case of “heavy tails.” In 
practice, we have the question of how to measure the 
heavy-tailedness, and how to assess the degree of “heav-
iness” of the tail of the distribution. There are paramet-
ric and nonparametric approaches to estimating the tail 
index [11]. In our article, we will analyze the “heavy-
tailedness” in the context of time series modeling based 
on GARCH models. Kurtosis is one of the measures 
used to detect “outliers” in time series. In 1905 Pear-
son introduced the concept of kurtosis through 4th or-
der moments: 

                                                
, (2)

where  is the central moment of the 4th order;
4 is the square of the variance. 

All distributions were classified as plateaucurtic, me-
socurtic or leptokurtic with respect to normal [12]. For 
a normal distribution K = 3, in connection with which 
an excess kurtosis (modified kurtosis indicator) is often 
used: 

                                    . 

Kurtosis K in the form (2) will be used further in the ar-
ticle. Fat tails (as a special case of heavy tails) are char-
acterized by excessive kurtosis K > 3, and the distribu-
tion is called leptokurtic [13].

In this paper, we will compare and explore the  
residuals of GARCH(1,1) models as often used in econo-
metric practice [14]. Recall the definition. The process  

t follows the generalized autoregressive condition-
al heteroscedasticity or GARCH(1,1)-model if t =  
= t zt , t = 1, 2, ..., where zt

 ~ N(0,1) is independent nor-
mally distributed random variables, and the conditional 
variance of the process has the form:

                         . (3) 

Note that in practice, model (3) only partly explains 
the fat tails, and it is necessary to refine the specification 
of the distribution of residuals. Student’s t-distribution 
is often used as an alternative to the normal distribution 
[3, 4]. The standardized Student’s t-distribution with 
zero mean and unit variance has a density:

where Г(.) is Euler gamma function;

ν  2 is number of degrees of freedom. 

The kurtosis of the distribution zt is

The kurtosis of the errors     is 

               
 (4)

The factor containing ν in expression (4) makes it 
possible to take into account the excess kurtosis [1]. It 
can be seen from formula (4) that the kurtosis of the t-
distribution depends on the degree of freedom and the 
degree of volatility of the process. Thus, by varying the 
degrees of freedom of the t-distribution, we can ob-
tain different values of kurtosis and different degrees of 
heavy-tailedness. However, kurtosis based on 4th-order 
moments is very sensitive to outliers, and therefore, in 
the presence of outliers, can lead to false conclusions 
about the nature of the distribution of the residuals.

The question of whether kurtosis measures heavy-
tailedness and how to determine which distribution 
has a heavier tail based on kurtosis is debatable. If, for 
example, we look at kurtosis as an average of outliers, 
then large kurtosis indicates large heavy tails [15]. Some 
authors describe kurtosis as a measure of both “poin-
tiness” and “tail thickness” [16]. In general, there are 
three approaches to comparing the heaviness of the tails 
of distributions: the usual kurtosis K, the measures of 
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“heaviness” of the tails, and the ratio of interquantile in-
tervals. Consider one of the approaches – a measure of 
heavy-tailedness based on quantiles, in the form:

                       (5)

where Qθ (yt) is θ-quantile yt , 0 <  <  < 0.5 [16].

Following article [17], we choose  = 0.25 and 
 = 0.01,  = 0.05. It is believed that the quantile mea-

sure (5) is free from assumptions about distributions 
and from kurtosis values. Therefore it is resistant to 
misclassifications of distributions and can be used to 
compare distributions. We calculate and study the be-
havior of kurtosis (2) and measure of heavy-tailedness 
(5) for the normal distribution and Student’s t-dis-
tribution, as a commonly used distribution in econo-
metric practice to account for fat tails, and compare it 
with the distributions of empirical returns data, which 
will allow us to make an assumption about the num-
ber degrees of freedom t-distribution for empirical data 
when specifying GARCH(1,1)-models. We will com-
pare this with the distributions of empirical data of re-
turns, which will allow us to make an assumption about 
the degrees of freedom t-distribution for empirical data 
when specifying GARCH(1,1)-models. 

2. Analysis of heavy tails  
of distribution in Russian studies

In this section, we will analyze how heavy tails of 
distributions are taken into account in practice when 
forecasting financial series of returns in recent studies. 
To account for fat tails in econometric practice, Stu-
dent’s t-distribution and its variations are often used. 
Shvedov noted the importance of using t-distribution 
for MLE (maximum likelihood estimation) estimates 
in the case of outliers in the data. The author com-
pared the EM-algorithm (expectation-maximization 
algorithm) and LSM (least-squares method) for lin-
ear regression model estimates on generated data with 
different distributions of errors [18]. Balaev considered 
and compared the two-dimensional t-distribution with 
a vector and a scalar of degrees of freedom, the gen-

eralized error distribution and the Gram-Charlier dis-
tribution according to the daily closing prices of stock 
indices of various countries: S&P 500, FTSE 100, 
CAC 40, DAX, Hang Seng, Nikkei during the period 
November 26, 1990 – November 18, 2012. The au-
thor noted that the distributions of all considered re-
turns have heavy tails. The kurtosis coefficient varied 
from 5.21 to 9.45. It was found that the model based on  
t-distribution with a vector of degrees of freedom was 
more preferable [19]. Works of Fantazzini were of a 
survey nature and were devoted to modeling multivari-
ate distributions based on copula functions. The paper 
introduced the concepts of upper and lower tail depen-
dences for random variables with a certain probability of 
outliers and considers Student’s copula functions [20]. 
Balazs in his work analyzed the influence of external 
sources of information (news and trading volumes) on 
the volatility of securities using GARCH(1,1)-models.  
The author noted that the hypothesis of normality 
was rejected for most of the securities under consid-
eration (returns on shares of 19 companies from the 
FTSE100 list for the period July 01, 2005 – July 01, 
2008) [21]. Some authors used a class of special models 
Go-GARCH, GJR-GARC, which allow one to esti-
mate the degrees of freedom of the t-distribution along 
with other model parameters [22, 23]. Lakshina sim-
ulated returns with further calculation of the dynam-
ic hedge ratio for eight shares of Russian companies 
traded on the RTS for the period January 01, 2007 –  
October 01, 2014. Kurtosis ranged from 18 to 42. Based 
on the GO-GARCH model, it was calculated that the 
residuals were Student’s distribution with 2 degrees of 
freedom. 

Note that the authors of the papers under consider-
ation used the kurtosis as an “indicator” of heavy tails, 
and the question of choosing the degrees of freedom  
t-distribution usually remained outside the scope of 
such studies. It is also known that the inclusion of the 
degrees of freedom t-distribution in the arguments of 
the likelihood function in the MLE is not always cor-
rect [24]. Thus, some alternative characteristics of the 
“heavy-tailedness” are needed, which are easily imple-
mented in practice. In our work, we decided to make 
an attempt to fill this gap. 
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3. Analysis of the measure  
of heavy-tailedness and kurtosis  

for Student’s distribution on generated data

Consider the behavior of the measure of heavy-tailed-
ness in the form (5) and kurtosis (2) for Student’s t(ν)-
distribution for different degrees of freedom ν. Using the 
Monte Carlo method, we will generate 5000 repetitions 
over N = 200, 750 and 1000 observations, calculate and 
compare the kurtosis K and measures of heavy-tailed-
ness K01, K05 for quantiles  = 0.01,  = 0.05, respective-
ly: the interval of variation from minimum to maximum 
(min-max) and average (mean). The simulation results 

are shown in Table 1. Random variables were generated 
in the Stata16 package. The generation of pseudo-ran-
dom numbers was implemented on the basis of the algo-
rithm proposed in the work [25]. Due to the properties 
of t-distribution, we considered degrees of freedom from 
3 to 10. Note that theoretical kurtosis exists for ν > 4. 

The values of the measures from Table 1 will be further 
used for comparison with the measures of heavy-tailed-
ness of the analyzed returns of the Moscow Exchange 
indices for further specification of the GARCH(1,1)-
model in choosing the assumption about the distribu-
tion of residuals. 

Table 1. 
Measures of heavy-tailedness (5) and kurtosis (2)  

for t(v)-Student’s distribution and normal distribution

  K01min–max K01mean K05min–max K05mean Kmin–max Kmean

N = 1000

t (3) 4.8–7.7  5.96 2.71–3.62 3.08 5.7–464.07 29.883

t (4) 3.9–7.08 5.085 2.51–3.37 2.875 4.09–304.55 12.653

t (5) 3.76–5.61 4.645 2.41–3.17 2.772 3.88–115.6 7.550

t (6) 3.71–5.35 4.388 2.35–3.13 2.708 3.5–127.91 6.166

t (7) 3.57–5.02 4.224 2.29–3.11 2.662 3.35–26.54 4.679

t (8) 3.45–4.97 4.103 2.26–3.13 2.633 3.30–16.28 4.486

t (9) 3.37–4.76 4.016 2.28–3.13 2.609 3.04–13.85 4.186

t (10) 3.38–4.68 3.947 2.29–3.11 2.589 3.01–13.83 4.013

N(0,1) 3.01–4.07 3.467 2.18–2.74 2.442 2.57–3.84 3.004

N = 750

t (3) 4.37–8.94 5.989 2.57–3.75 3.084 4.28–572.55 27.596

t (4) 3.81–7.52 5.080 2.39–3.49 2.881 3.34–614.12 12.881

t (5) 3.45–6.49 4.649 2.31–3.37 2.771 3.31–541.35 7.391

t (6) 3.39–5.82 4.397 2.27–3.25 2.707 3.26–147.19 5.672

t (7) 3.34–5.31 4.216 2.27–3.21 2.663 3.06–48.49 4.909

t (8) 3.21–5.42 4.105 2.23–3.25 2.631 3.02–55.67 4.411

t (9) 3.21–5.21 4.013 2.15–3.07 2.606 2.89–23.87 4.152

t (10) 3.12–5.11 3.951 2.18–3.20 2.591 2.89–24.09 3.975

N(0,1) 2.82–4.37 3.465 2.13–2.84 2.442 2.49–4.36 2.995
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Behavior of measures of heavy-tailedness – key find-
ings:

 ♦ Measures of heavy-tailedness K01, K05 (5) based on 
quantile estimates are more robust to outliers than 
kurtosis calculated from distribution moment esti-
mates. Measures lie in fixed ranges depending on the 
degree of freedom, while the kurtosis varies greatly 
for all considered degrees of freedom ν from 3 to 
10. It is rather difficult to make assumptions about 
the degrees of freedom of the t-distribution over the 
kurtosis values.

 ♦ Measures of heavy-tailedness K01 for quantile 0.01 
are more informative, as K05 measures have many 
overlapping intervals. In what follows, to justify the 
choice of the degrees of freedom ν of the t-distribu-
tion, we will use the K01 measure, and the K05 mea-
sure will be used to control the range of the measure 
using empirical data.

 ♦ The resulting intervals of variation of measures of 
heavy-tailedness for theoretical distributions will 
be used in further work to compare with measures 
of heavy-tailedness based on empirical data and 
substantiate the assumption regarding the degrees 
of freedom of the t-distribution of residuals in 
GARCH(1,1)-model. 

 ♦ It can be assumed that the measures of heavy-tailed-
ness comparison approach works well on large sam-

ples (N = 700 and more). Note that in [17], mea-
sures of heavy-tailedness were also calculated based 
on interfractile range (  = 0.125), which requires 
a sample of at least 1000 observations. This can be 
attributed to the disadvantages of this approach, 
since economic data are not always expressed in 
long time series.

4. Measures of heavy-tailedness  
and kurtosises for Moscow Exchange indices

In this paper, we examined the returns (logarithmic 
differences) of the MOEX Index: major and sectoral in-
dices for the period from April 01, 2019 to February 23, 
2022 (732 trading days) [26]. The opening and closing 
prices (the price of the first and last transaction on the 
trading day) were studied. Graph of returns of the oil 
and gas index (closing price) is shown in Fig. 1. The se-
ries of returns has a constant zero mean value, and clus-
tering volatility is observed. The period t < 200 (April 
01, 2019 – February 20, 2020) is marked as a period of 
low volatility. The returns dynamics of other indices be-
have in a similar way. Periods of high volatility, as a rule, 
are characterized by abnormally high values (in absolute 
value) of returns, which leads to high values of kurtosis 
and the appearance of “fat” distribution tails. Note that 
indices with different kurtosis values were taken for fur-
ther analysis.

  K01min–max K01mean K05min–max K05mean Kmin–max Kmean

N = 200

t (3) 3.87–12.45 6.259 2.25–4.31 3.108 3.28–137.78 13.783

t (4) 3.42–9.54 5.237 2.21–3.74 2.897 3.12–141.47 8.775

t (5) 3.17–7.75 4.756 2.14–3.73 2.790 2.78–62.72 6.123

t (6) 2.81–6.46 4.459 1.97–3.64 2.714 2.71–65.19 5.200

t (7) 2.97–7.72 4.307 1.99–3.75 2.670 2.52–21.59 4.648

t (8) 2.96–6.31 4.155 2.01–3.40 2.633 2.61–26.43 4.266

t (9) 2.96–5.56 4.058 2.05–3.62 2.611 2.51–26.48 4.086

t (10) 2.73–6.24 3.987 2.00–3.51 2.588 2.31–30.24 3.943

N(0,1) 2.72–4.92 3.504 2.01–3.23 2.446 2.32–4.28 3.007
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Let us introduce the notation in Tables 2, 3:
 ♦ Period 1: April 01, 2019 – February 23, 2022 
(N = 732), period 2: April 01, 2019 – February 20, 
2020 (N = 200);

 ♦ К1, К2 are kurtoses (2) of the returns of the Moscow 
Exchange indices for period 1 and 2, respectively;

 ♦ K101, K105 and K201, K205 are measures of heavy-
tailedness (5) for periods 1 and 2 for 0.01 and 0.05 
quantiles, respectively.

Tables 2, 3 contain the values of kurtoses К1 and K2 
of index returns for two periods: period 1 has a pro-
nounced clustering volatility, period 2 – the period of 
low volatility. Note that period 1 is characterized by a 
significant difference in the value of the kurtosis be-
tween the opening and closing prices by almost two 
times, and the kurtosis varies from 6.77 to 51.87. The 
opening price (variables with index 2 in Tables 2, 3) and 
the closing price (variables with index 1 in Tables 2, 3) 
as different variables were used further for modeling. 
It is obvious that the value of kurtoses of indicators for 
period 1 indicates that the assumption of normality of 
residuals in GARCH(1,1) cannot be used. In period 2, 
the differences in the value of kurtoses for the opening 
and closing prices are insignificant, and for some indi-
ces they coincide with the kurtosis of the normal distri-
bution (K = 3) (Tables 2, 3). Thus, further analysis and 

comparison of estimates of GARCH(1,1)-models in the 
work was carried out for period 1.

It should be noted that the measures of heavy-tailed-
ness K201 (5) of most of the analyzed indices (85%) cal-
culated for period 2 fall within the intervals of vary-
ing measures for a normal distribution (N = 200):  
2.72–4.92 (Table 1). The measures of heavy-tailed-
ness K201 (5) of some variables calculated for period 
2 are given in Table 2. Thus, it can be assumed that 
GARCH(1,1)-models, assuming normal residuals, will 
be the best model for a period with low volatility. 

Assumptions about the degrees of freedom of the 
t(ν)-distribution of residuals for further specification 
of GARCH(1,1)-models by comparing the calculated 
measures of heavy-tailedness with the value of mea-
sures of theoretical distributions (Table 1) based on the 
calculated measures were made for period 1. For ex-
ample, index blue1 has measure of heavy-tailedness  
K101 = 6,009 (Table 2). This measure corresponds 
to the variation interval K01min–max (N = 750) for t(3):  
4.37–8.94; t(4): 3.81–7.52; t(5): 3.45–6.49 (Table 1). 
Therefore, t(3)–t(5) will be the assumed distributions 
of the residuals when estimating the GARCH(1,1)-
models. We will consider how well the considered mea-
sure of heavy-tailedness allows us to correctly specify 
GARCH(1,1). From Tables 2, 3 it can be seen that mea-

Fig. 1. Logarithmic difference of Oil and Gas Index (Closing Price) (y-axis)  
for the period from April 01, 2019 to February 23, 2022 (x-axis).
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Table 2.
Values of kurtoses (2) and measures of heavy-tailedness (5)  

of index returns (logarithmic differences), main equity indices

MOEX Index

Period 1 Period 2

K1 K101 K105
Estimated t(v) 
for residuals

K2 K201 K205

blue1 
MOEX Blue  
Chip Index

15.194 6.009 2.946 t (3)–t (5) 3.597 3.991 2.287

blue2 33.434 6.225 2.966 t (3)–t (5) 3.579 4.541 2.509

imoex1 
MOEX Russia  

Index

15.596 6.347 3.019 t (3)–t (5) 3.406 3.792 2.347

imoex2 32.844 6.763 2.993 t (3)–t (4) 3.392 4.041 2.319

rts1
RTS Index

14.432 6.716 3.179 t (3)–t (4) 4.982 4.547 2.411

rts2 29.391 6.508 3.087 t (3)–t (5) 4.177 5.333 2.789

Note: var1 is closing price, var is opening price. Period 1: April 01, 2019 – February 23, 2022 (N =  732), period 2: April 01,  
          2019 – February 20, 2020 (N = 200).

Table 3.
Values of kurtoses (2) and measures of heavy-tailedness (5)  
of index returns (logarithmic differences), sectoral indices

MOEX Index

Period 1 Period 2

K1 K101 K105
Estimated t(v) 
for residuals K2

gaz1 
Oil and gas 

14.669  5.602 3.007 t (3)–t (6) 3.233

gaz2 27.428 6.221 3.388 t (3)–t (5) 3.529

chem1 
Chemicals

6.772 5.785 3.528 t (3)–t (6) 5.527

chem2 10.558 6.034 3.270 t (3)–t (5) 7.789

electro1
Electric Utilities

21.194 6.604 3.107 t (3)–t (4) 3.519

electro2 36.633 6.775 2.937 t (3)–t (4) 4.044

telecom1
Telecoms

13.667 6.373 3.109 t (3)–t (5) 7.295

telecom2 51.869 7.142 3.461 t (3)–t (4) 5.977
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sures of heavy-tailedness did not give a clear answer, but 
they allowed us to narrow down the number of models 
that need to be further evaluated.

5. Results

In this section, we compare the GARCH(1,1) speci-
fications for the MOEX indices assuming different types 
of distribution in the residuals: normal and t-distribu-
tion with degrees of freedom from 3 to 9. The results of 
estimation and comparison of models for the indicator 
gaz1 are given as an example in Table 3. The likelihood 
ratio test [27, p.171] and the comparison of information 
criteria by Akaike and Schwartz were used to compare 
models. The results showed the same result, so only the 
value of the maximum of the likelihood function is giv-
en below in the text. Estimates of the parameters  and 

 of the GARCH(1,1)-model in the form (3) are given 
in Table 4. LLF values are the value of the maximum 
likelihood function for the current model. Note that the 
full log-likelihood function with the inclusion of terms 
without optimization parameters is calculated in Stata. 

The form of the log-likelihood function under the as-
sumption of normal and t-distribution is given in [28]. 
All model coefficients were statistically significant at the 
1% significance level.

The results show (Table 4) that for various specifica-
tions, the coefficient  0.84–0.89, which indicates the 
persistence of volatility over time, (  +  ) exceeds 0.9, 
which indicates the presence of a pronounced GARCH 
effect. The coefficients  and  for various specifica-
tions behave quite steadily. (  +  ) > 1 is for the case 
t(3), which violates the condition of positivity of the 
conditional variance of the model. This model is also 
not adequate in terms of modeling heavy tails, since 
the kurtosis of the t-distribution is defined and great-
er than 3 for the degrees of freedom  > 4. The model 
with t(5)-distribution in the residuals is the best model 
in terms of the minimum values of information criteria, 
for which AIC = –4300.17 and BIC = –4281.79. For 
this model, there is also a maximum of LLF = 2154.09. 
GARCH(1,1) assuming a t(5) distribution in residuals 
would be the most preferred model for predicting vola-

MOEX Index

Period 1 Period 2

K1 K101 K105
Estimated t(v) 
for residuals K2

metal1
Metals & Mining

12.399  5.621 2.842 t (3)–t (6) 3.295

metal2 25.064 5.975 3.049 t (3)–t (5) 3.472

finan1
Financials

13.063 5.973 3.309 t (3)–t (5) 4.097

finan2 37.475 6.557 3.327 t (3)–t (5) 4.421

potreb1
Consumer goods 
and Services

12.399 5.621 2.842 t (3)–t (6) 3.295

potreb2 25.064 5.975 3.049 t (3)–t (5) 3.472

trans1
Transport

16.832 7.081 3.457 t (3)–t (4) 5.569

trans2 18.288 7.712 3.368 t (3) 7.355

Note: var1 is closing price, var is opening price. Period 1: 01.04.2019–23.02.2022 (N = 732), period 2: 01.04.2019–20.02.2020 (N = 200).
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tility. Note that this model is in line with the assump-
tions about model according the measures of heavy-
tailedness: t (3)–t (6) (Table 3). 

Note that the indicator gaz1 has a kurtosis K1 = 14.67, 
which indicates outliers in the data and does not allow 
using the assumption of normality of the residuals in 
the GARCH(1,1)-model. GARCH(1,1) with normal-
ity in residuals has the highest AIC, BIC and the low-
est LLF. Measures of heavy-tailedness К101 = 5.60 and 
К105 = 3.01 fall within the variation intervals for the 
measures of heavy-tailedness for distributions t(3)–t(6) 
(Table 1), which in this case coincided with the results 
of estimating the GARCH(1,1)-model by the enumera-
tion method.

GARCH(1,1)-models were evaluated in the same 
way for all other indicators. The best models with maxi-
mum LLF are given in Table 5. Comparison of various 
specifications of GARCH(1,1) models for each indica-
tor is given in the Appendix.

Models with t(5)-distribution assumptions in resid-
uals are the most common and best models as shown 

by the analysis of GARCH(1,1)-model parameter es-
timates for MOEX Indices. Such specifications of the 
model amounted to 60%, while the kurtosis of the log-
arithmic returns of indicators varied from 6 to 51 (Ta-
bles 2, 3). The ability to evaluate GARCH(1,1)-models 
under the assumption of a t(ν) distribution in residu-
als is available in Stata16 with  (for example, you 
can choose ν = 1000). As the analysis of empirical data 
shows, the degrees of freedom ν of t-distributions for the 
considered indicators vary from 4 to 7 (Table 5), and 
in terms of measures of heavy-tailedness at ν = 10, the  
t-distribution approaches normal. Degrees of freedom 
assumptions based on measures of heavy-tailedness 
agreed with the results of empirical analysis by mod-
el enumeration in 68% of cases. A few indexes, for ex-
ample trans2, became an exception. Models with an 
assumption of a t(3)-distribution in the residuals, for 
which there is no theoretical kurtosis, were not among 
the best. You can also notice that there is not a single 
model with the assumption of normal residuals for pe-
riod 1. Such models had, as a rule, the worst LLF char-
acteristics (application).

Table 4.
Estimates of parameters of the GARCH(1,1) model for the variable gaz1 assuming  

different degrees of freedom of the t-distribution for residuals

Distribution of residuals γ β γ + β LLF

N 0.155 0.836 0.991 2130.876

t (3) 0.136 0.892 1.028 2149.819

t (4) 0.110 0.884 0.993 2153.393

t (5) 0.104 0.879 0.982 2154.087

t (6) 0.102 0.875 0.978 2153.702

t (7) 0.103 0.871 0.974 2151.963

t (8) 0.103 0.871 0.974 2151.963

t (9) 0.104 0.869 0.973 2150.997
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Table 5.
Estimates of the parameters of the GARCH(1,1)-model for MOEX Indices  

assuming different degrees of freedom of the t-distribution of residuals

MOEX Index
Estimated distribution  

of residues according to measures  
of heavy-tailedness (5)

Distribution  
of residuals  

of the best model by LLF
γ β γ + β LLF

Main Equity Indice

blue1 t (3)–t (5) t (6) 0.115 0.869 0.984 2233.683

blue2 t (3)–t (5) t (5) 0.123 0.861 0.984 2219.847

imoex1 t (3)–t (5) t (6) 0.116 0.871 0.987 2295.943

imoex2 t (3)–t (4) t (7) 0.112 0.863 0.975 2294.071

rts1 t (3)–t (4) t (5) 0.097 0.901 0.998 2052.176

rts2 t (3)–t (5) t (5) 0.121 0.871 0.992 2046.424

Sectoral Indices

gaz1 t (3)–t (6) t (5) 0.104 0.879 0.982 2154.087

gaz2 t (3)–t (5) t (5) 0.145 0.84 0.985 2109.548

chem1 t (3)–t (6) t (5) 0.05 0.955 1.005 2345.464

chem2 t (3)–t (5) t (5) 0.149 0.829 0.978 2313.152

electro1 t (3)–t (4) t (5) 0.136 0.842 0.978 2350.902

electro2 t (3)–t (4) t (5) 0.137 0.843 0.98 2350.902

telecom1 t (3)–t (5) t (4) 0.119 0.864 0.983 2437.535

telecom2 t (3)–t (4) t (4) 0.152 0.857 1.009 2418.431

metal1 t (3)–t (6) t (5) 0.096 0.879 0.975 2275.479

metal2 t (3)–t (5) t (5) 0.142 0.806 0.948 2262.375

finan1 t (3)–t (5) t (5) 0.102 0.898 1.000 2167.337

finan2 t (3)–t (5) t (4) 0.124 0.883 1.007 2129.232

potreb1 t (3)–t (6) t (4) 0.104 0.881 0.985 2274.596

potreb2 t (3)–t (5) t (5) 0.142 0.806 0.948 2262.375

trans1 t (3)–t (4) t (4) 0.212 0.732 0.944 2251.718

trans2 t (3) t (6) 0.301 0.668 0.969 2217.500
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Note that in this work we did not consider alterna-
tive approaches to estimating the heavy-tailedness dis-
tribution, for example, other types of measures, and 
this is also of scientific interest for further research. 
The GED-distribution is another possible distribution 
in the specification of GARCH-models, which was not 
considered in this study. Often the distribution of fi-
nancial indicators has asymmetry, which also needs 
to be taken into account when choosing the specifica-
tion of GARCH models, but we have not considered 
it. As noted above, measures of heavy-tailedness based 
on interfractile ranges are also used in works which re-
quire a sample size of N  1000 [17]. These measures 
may also be the subject of further research.

Conclusion

We considered generalized autoregressive models 
of conditional heteroscedasticity for 22 MOEX Indi-
ces (Main Equity Indices and Sectoral Indices) with 
different kurtosis values from 3 to 52 in order to study 
the heavy-tailedness of distributions and the influence 
of kurtosis on the choice of the distribution type as-
sumption in the residuals of the model to explain the 
fat tails. As the analysis showed, kurtosis is only partly 
an “indicator” of fat tails: on its basis, it is difficult to 
make an assumption about the form of the distribution 

of residuals, since it is sensitive to outliers. So, for ex-
ample, the kurtoses for chem1 and blue2 were 6.77 and 
33.43, but for these indicators the best model turned 
out to be the same model specification – GARCH(1,1) 
with t(5)-distribution in the residuals. It was shown in 
the work that the considered measures of heavy-tailed-
ness are sufficiently robust to outliers and allow us to 
partially justify the choice of the degree of freedom 
for the t-distribution when evaluating GARCH(1,1)-
models. It should be noted that the use of the model 
comparison approach based on maximum likelihood 
estimates gives similar results in 68% of cases (Table 5).  
Perhaps the classical approach is more preferable in 
econometric practice for the analysis of financial time 
series on samples of size N < 1000. However, the anal-
ysis of measures of heavy-tailedness is of great prac-
tical importance for modeling time series with heavy 
tails and substantiating the choice of degrees of free-
dom of the t-distribution, since kurtosis is not a good 
quantitative measure of the “heaviness” of distribution 
tails. In the opinion of the authors, measures of heavy-
tailedness and their properties can be useful to a wide 
range of researchers working with financial time series 
in order to obtain more accurate profitability forecasts. 
This article is a small contribution to the further devel-
opment of time series analysis tools. 

Appendix.
Comparison of GARCH(1,1) models for MOEX Index by LLF

MOEX Index

Distribution  
of residuals

blue1 blue2 imoex1 imoex2 rts1 rts2 gaz2 chem1 chem2 electro1 electro2

N 2217.00 2189.29 2279.85 2277.39 2021.94 2017.52 2067.12 2321.80 2285.55 2321.49 2266.05

t (3) 2225.95 2213.30 2288.15 2284.26 2048.65 2041.62 2104.99 2342.08 2309.40 2347.75 2322.18

t (4)) 2231.36 2218.40 2293.59 2290.61 2051.96 2045.63 2108.85 2345.10 2312.76 2350.74 2325.95

t (5) 2233.23 2219.85 2295.48 2293.09 2052.18 2046.42 2109.55 2345.46 2313.15 2350.90 2326.57

t (6) 2233.68 2219.83 2295.94 2293.95 2051.30 2046.02 2109.00 2344.89 2312.49 2350.07 2325.93

t (7) 2233.51 2219.18 2295.78 2294.07 2050.04 2045.15 2107.95 2343.97 2311.44 2348.89 2324.75
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