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Abstract
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Introduction

Currently, there is an increase in the need for 
the design and implementation of intelligent 
transport systems (ITS) for a “smart city” 

due to the ever-increasing traffic, causing the forma-
tion of multiple traffic jams. At the same time, one of 
the most promising directions of the ITS evolution-
ary development is the use of “smart traffic lights” 
that analyze the dynamics and structure of traffic and 
pedestrian flows [1].

Various approaches to rational traffic light man-
agement are known, in particular, based on informa-
tion exchange [2] using machine learning methods 
with reinforcement [3] based on mixed integer pro-
gramming [4, 5], using genetic and swarm optimi-
zation algorithms [6–8], as well as artificial neural 
networks (ANS), fuzzy logic, clustering and adaptive 
control for the ITS [11–13].

To study the behavior and optimize the character-
istics of the ITS, various combined approaches are 
used, for example, agent-based and discrete-event 
modelling methods supported in AnyLogic [14, 15], 
joint control of traffic lights and vehicle trajectories 
[16], adaptive control based on a predictive model 
and reinforcement learning [17]. At the same time, 
most of these approaches are used for ITS with a sim-
plified configuration, for example, for two consecu-
tive intersections [15], one intersection consisting of 
two roads, etc. [17]. Various scenarios that determine 
the periodic dynamics of interacting transport and 
pedestrian routes are not considered.

As a rule, significant difficulties arise when man-
aging the characteristics of the ITS with a more com-
plex geometry of the “Manhattan Lattice” type [18, 
19]. In such an ITS, inconsistent control of the states 
of at least one traffic light, as a rule, leads to a change 
in vehicle speed and traffic density on all connected 
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routes. At the same time, in order to maximize the 
output traffic flow, it is necessary to effectively man-
age traffic lights, ensuring periodic prioritization 
between vehicles and pedestrians. So, for example, 
when a significant number of people gather at a reg-
ulated pedestrian crossing, the inclusion of a traffic 
light permitting signal is justified (a similar approach, 
in particular, has already been successfully applied 
in the street road network of some cities in Austria). 
At the same time the main purpose of “smart traf-
fic lights” is to monitor traffic flows and select the 
optimal time points for switching control signals. 
The greatest difficulties in managing traffic flows are 
caused by the effect of “wave speed reduction” [20], 
when, as a result of a vehicle braking at a traffic light, 
all subsequent drivers inadvertently seek to increase 
the safe distance, contributing to the formation of 
traffic congestion. Therefore, it is necessary to study 
the heterogeneous spatial dynamics of agents and use 
data on the structure of traffic and pedestrian flows 
for adaptive traffic light control. 

In this article, we propose a new simulation model 
of heterogeneous traffic flows in a “smart city” with 
adaptive traffic light behavior control based on fuzzy 
clustering. Within the framework of such a model, 
individual decisions on switching traffic light control 

signals are based on a fuzzy assessment of the traffic 
situation, including the evolutionary dynamics of both 
traffic and pedestrian flows (i.e. with equal priority in 
relation to cars and pedestrians). At the same time, an 
important task is solved to maximize the total traffic of 
the output stream under various scenarios, in particu-
lar, for the ITS with spatially homogeneous and peri-
odic flow characteristics.

The scenarios presented in the paper, the corre-
sponding optimal controls, as well as, in general, the 
proposed universal simulation model with the possi-
bility of further modification of the studied geometry 
of intersections, as the authors see, can be considered 
to be an element of an integrated decision-making sys-
tem in the management of urban services.

1. Description of the model

A key fragment of a multi-agent transport system of 
the Manhattan Lattice type is considered, consisting 
of four interconnected nodes-intersections that allow 
arbitrary change of vehicle directions, i.e. movement 
in a straight line, turns to the left and right, as well 
as a U-turn and movement in the opposite direction 
(Fig. 1).

Fig. 1. General scheme of a multi-agent transport system of the Manhattan Lattice type 
with controlled traffic at pedestrian crossings.
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Earlier, in [18, 19], the dynamics of traffic flows in 
Manhattan Lattice class systems was examined and 
various ways of their optimization were proposed, 
mainly based on the management of vehicle routes, 
i.e. the search and assignment of optimal routes for 
each agent-vehicle [18], including using genetic algo-
rithms [19]. At the same time, one of the important 
ways to reduce the load of the ITS is to improve the 
manoeuvrability of the vehicle, including by choos-
ing the least loaded traffic lanes, the determination 
of which is implemented using the fuzzy clustering 
algorithm [21, 22]. The existing methods of improv-
ing traffic flow are implemented mainly for unmanned 
vehicles (UVs), which can be “assigned” the optimal 
route depending on the current situation. The spatial 
dynamics of conventional vehicles (CVs) is most influ-
enced by “smart traffic lights” that regulates the move-
ment of traffic and pedestrian flows. In particular, they 
make it possible to effectively redistribute vehicle flows 
at intersections and pedestrian crossings, preventing 
the formation of traffic congestion.

Such traffic jams are formed mainly as a result of 
the “wave speed reduction.” first studied in [20] and 
illustrated in Fig. 2. When braking a vehicle, for exam-
ple, at the stop line of an adjustable pedestrian cross-
ing or in front of the nearest obstacle in the form of 
another vehicle (Fig. 2), the car following it, as a rule, 
will brake harder in order to maintain a safe distance by 
increasing the radius of his personal space, due to the 
psychological characteristics of the driver’s reaction. 
Further, the effect of an increase in the “safe” distance 
(“expansion” of personal space) spreads along the 
chain, reducing the flow rate as you move away from 
the original source of congestion (traffic lights), up to 
a complete stop.

To model the spatial dynamics of agents within the 
ITS (vehicles and pedestrians), systems of finite-dif-
ference equations with a variable structure can be used 
[21, 23]. This allows one to consider various scenarios 
of interaction of vehicles with each other and with the 
external environment (such as V2V, V2P, V2I, etc.) 
and the influence of the radius of each agent’s personal 
space.

Fig. 2. Illustration of the effect  
of “wave speed reduction” in a road network  

with an adjustable pedestrian crossing.

Here is a brief formal description of the developed 
simulation model of vehicle movement, considering 
the influence of “smart traffic lights” regulating traffic 
and pedestrian traffic within the ITS.

Here,

T = {t0, t1, ..., |T |} is the set of time moments (in min-
utes), |T | is the total number of time moments; t0  T,  
t|T |  T are initial and final moments of time;

L = {l0, l1, ..., l|L |} is the set of indices of “smart traffic 
lights”, where|L | is the total number of “smart traffic 
lights”;

sl
 (tk–1)  {1, 2, 3}, l  L are the states of the phase of the 

l-th “smart traffic light” at the moment tk–1 (tk–1  T ):  
sl

 (tk–1) = 1 is the prohibiting (for agents-vehicle) traffic 
light signal (“red”), sl

 (tk–1) = 2 is the warning signal of 
the traffic light (“yellow”), sl

 (tk–1) = 3 is the permitting 
(for agents-vehicle) traffic light signal (“green”);

{τl1, τl2, τl3}  T, l  L is the duration of the phases of the 
l-th “smart traffic light” (in seconds) (control param-
eter of the model);

 is the minimum required (to ensure safe traffic)  
duration of the main phase (“red” or “green”) for 
“smart traffic lights” (in seconds) (control parameter 
of the model);
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{Pl
 (tk–1), Vl

 (tk–1)} is the total number of pedestrians 
and vehicles, respectively, located in the monitoring 
zones of the l-th “smart traffic light” at the moment  
tk–1

 (tk–1  T );

 is the total number of vehicles in clus-
ters and the average inter-cluster distance calculated 
using the fuzzy clustering algorithm for agents located 
in the monitoring zones of the l-th smart traffic light at 
the momenttk–1

 (tk–1  T );

l
 , l  L is the threshold ratio between the number of 

pedestrians at the crossing regulated by the l-th smart 
traffic light and the total number of agent-vehicles 
planning to move this crossing (in any direction), at 
which it is necessary to turn on the traffic light permit-
ting signal (control parameter of the model);

l , l  L is the coefficient of significance of the average 
inter-cluster distance (for vehicles), estimated using 
the fuzzy clustering algorithm, when controlling traffic 
flows regulated by the l-th smart traffic light (control 
parameter of the model);

The phase status of the l-th “smart traffic light”  
(l  L) at the moment tk (tk  T ) is set up according to 
the following rules:

              (1)

under conditions:

I. (tk  tk–1 + τl1 and sl
 (tk–1) = 1) or (tk > tk–1 + τl2+  

+ τl3 and sl
 (tk–1) = 3 with the first method of con- 

trolling the duration of phases, based on the collec-
tive impact on traffic lights;

II.  ((tk  tk–1 + τl1 and sl
 (tk–1) = 1) or (tk > tk–1 + τl2+ + τl3 

and sl
 (tk–1) = 3)) or

 

 with the second method of controlling the duration of 
phases based on local (“weakly adaptive”) control of 
traffic light switching, considering the prioritization 
of pedestrian traffic;

III. ((tk  tk–1 + τl1 and sl
 (tk–1) = 1) or 

 (tk > tk–1 + τl2+ τl3 and sl
 (tk–1) = 3))or

 

 with the third (adaptive) method of controlling the 
duration of phases based on the fuzzy clustering al-
gorithm, considering the prioritization of pedestrian 
traffic;

IV. ((tk > tk–1 + τl1 and sl
 (tk–1) = 1) or (tk > tk–1 + τl3 and 

sl
 (tk–1) = 3)) or (tk  tk–1 + τl2 and sl

 (tk–1) = 2), which 
means that one of the main traffic lights (“red” or 
“green”) has expired or continues to operate, the 
previously included warning (“yellow”) signal;

V. (tk  tk–1 + τl3 and sl
 (tk–1) = 3) or (tk > tk–1 + τl2 + τl1 

and sl
 (tk–1) = 1) with the first method of controlling 

the duration of phases, based on the collective impact 
on traffic lights;

VI. ((tk  tk–1 + τl3 and sl
 (tk–1) = 3) or 

(tk > tk–1 + τl2 + τl1 and sl
 (tk–1) = 1)) or 

 
 with the second method of controlling the duration of 

phases based on local (“weakly adaptive”) control of 
traffic light switching, considering the prioritization 
of traffic flow traffic;

VII. ((tk  tk–1 + τl1 and sl
 (tk–1) = 3) or  

 (tk > tk–1 + τl2 + τl1 and sl
 (tk–1) = 1)) or  

 

 

with the third (adaptive) method of controlling the 
duration of phases, based on the fuzzy clustering al-
gorithm, considering the prioritization of the trans-
port stream traffic.

The total number of vehicles and pedestrians located 
in the monitoring zones of the -th “smart traffic light”  
(l  L) at the moment tk (tk  T) calculated with the 
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second method of local (“weakly adaptive”) switching 
control is equal to

              ,  , (2)

where

                        (3)

                       

where

I = { i1, i2, ..., i|I |} is the set of indices of agent-vehicles, 
where |I

 | is the total number of vehicles;

 is the set of indices of agent-pedestri-
ans, where  is the total number of pedestrians;

{Rl1, Rl2}, l  L are the radiuses of traffic monitoring 
zones for road and pedestrian traffic, respectively, for 
the l-th “smart traffic light” (control parameter of the 
model); 

{dil (tk), },  i  I ,   , l  L  is the distance from the 
i-th agent-vehicle and the -th agent-pedestrian to the 
l-th “smart traffic light” at the momen tk (tk  T ).

The total number of vehicles in clusters and the 
average inter-cluster distance for traffic flows located 
in the monitoring zones of the -th “smart traffic light” 
(l  L) at the moment tk (tk  T ) calculated with the third 
method of adaptive switching control using the fuzzy 
clustering algorithm are equal

       (4)

where

Сl = { сl1, сl2, ...,  с |Сl |}, l  L is the set of cluster indices 
determined for the analysis of the traffic situation in 
the location area of the l-th “smart traffic light” using 
a fuzzy clustering algorithm, where |Сl | is the total 
number of clusters (control parameter of the model);

 is the total number of vehicles 
belonging to the cl-th cluster at the moment  tk (tk  T );

 are pairwise distances 
between the centers of clusters belonging to the l-th 
“smart traffic light” at the moment tk (tk  T ).

The spatial dynamics of vehicle agents and pedestri-
ans can be modelled using systems of finite-difference 
equations with the variable structure, considering the 
regulatory impact of “smart traffic lights.”

Here,

{xil (tk), yil (tk)}, { }, i  I ,   , l  L are co-
ordinates of the i-th agent-vehicle and the -th agent-
pedestrian located in the monitoring zone of the l-th 
“smart traffic light” at the moment tk (tk  T );

{vi (tk–1),  (tk–1)}, i  I ,    is the preferred speed of the  
-th agent-vehicle and the -th agent-pedestrian at the 

moment tk–1 (tk–1  T );

{ri (tk–1),  (tk–1)}, i  I ,   , l  L are the radius of 
personal spaces of the i-th agent-vehicle and the  
-th agent-pedestrian, the values of which depend on 

the density of the transport (pedestrian) flow consist-
ing of agents that reduce their speed and are located 
in the direction of travel (see Fig. 2) at the moment  
tk–1 (tk–1  T );

{mib (tk),  (tk)}, i  I ,   , b  I   is the distance 
from the i-th agent-vehicle and the -th agent-pedes-
trian to the nearest b-th agent-obstacle at the moment  
tk–1 (tk–1  T );

{wi (tk–1), (tk–1)}, {qi (tk–1),  (tk–1)}  {–1, 0, 1}, i  I , are 
parameters that determine the direction of movement 
of the i-th agent-vehicle and the -th agent-pedestrian 
at the moment tk–1 (tk–1  T ):

wi (tk–1), (tk–1) = –1 when moving in the direction of 
the E-W (see Fig. 1),
wi (tk–1), (tk–1) = 0 when moving in the direction of 
the N-S or S-N,
wi (tk–1), (tk–1) = 1 when moving in the direction of 
the W-E, 
qi (tk–1), (tk–1) = –1 when moving in the direction of 
the S-N,
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qi (tk–1),  (tk–1) = 0 when moving in the direction of the 
W-E or E-W, 
qi (tk–1),  (tk–1) = 1 when moving in the direction of 
the S-N;

 is the coefficient that specifies the ratio of the scales 
of real and model time.

The spatial dynamics of the i-th agent-vehicle (i  I )  
and the i-th agent-pedestrian (i  I ), located in the 
monitoring zone of the l-th smart traffic light (l  L)
at the moment tk (tk  T ) without taking into account 
internal manoeuvring (associated with overtaking, 
lane changes, etc.) is given by the following system of 
finite difference equations with a variable structure:

              (5)

              (6)

              (7)

              (8)

i  I ,   , b  I  , l  L,
where

VIII. sl
 (tk–1) = 3 and mib (tk–1) > (ri (tk–1) + rb (tk–1)) for 

the nearest agent (b  I  ), which means that the 
permissive (for agent-vehicles) traffic light signal 
(“green”) is in effect and there are no obstacles in 
the form of other vehicles or pedestrians on the way 
of the i-th agent-vehicle (i  I );

IX. sl
 (tk–1) = 1 and mib (tk–1)  (ri (tk–1) + rb (tk–1)) for the 

nearest agent (b  I  ), which means that a prohibi-
tor (for agent-vehicles) traffic light signal (“red”) is 
in effect, or there is an obstacle in the form of an-
other vehicle or a pedestrian on the way of the i-th 
agent-vehicle (i  I );

X. sl
 (tk–1) = 1 and  for the 

nearest agent (b  I  ), which means that a pro-
hibitor (for agent-vehicles) traffic light signal (“red”) 
is in effect and there are no obstacles in the form of 
other pedestrians or vehicles on the way of the -th 
agent-pedestrian (   );

XI. sl
 (tk–1) = 1 or  for the 

nearest agent (b  I  ), which means that the 
permissive (for agent-vehicles) traffic light signal 
(“green”) is in effect, or there is an obstacle in the 
form of another pedestrian or vehicle on the way of 
the -th agent-pedestrian (   ).

The total traffic of the output stream that should be 
maximized is equal to

                             , (9)

where

          (10)

         (11)

where
{ , }, { , }, i  I ,     are co-
ordinates of the i-th agent-vehicle and the -th agent-
pedestrian within the ITS at the moment tk–1

 (tk–1  T );

{X, Y } is the set of all coordinates of the ITS digital 
road network.

Then, it is possible to formulate the following optimi-
zation problem to be solved considering the chosen 
method of controlling “smart traffic lights.”

Problem A. The need to maximize the total traffic of 
the output flow by the set of control parameters {τl1, τl2, 
τl3, l, l

 , Rl1, Rl2, |Cl |, l}:

                            (12)

s.t.
, , , , 

, , 
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where ,  are the 
lower and upper boundary values of the control param-
eters of the model.
To solve Problem A, the previously proposed genetic 
optimization algorithm of real coding (RCGA class) is 
used [20, 25], aggregated by target functionality with 
the developed simulation model of the transport sys-
tem implemented in AnyLogic.

2. Fuzzy clustering  
algorithm

To assess the structure of traffic flow and adaptive con-
trol of “smart traffic lights”, it is proposed to use the 
fuzzy clustering algorithm (Fuzzy C-means) [21, 22, 
26, 27]. The choice of this algorithm is primarily due 
to the possibility of considering various characteristics 
of moving vehicles in the formation of clusters, in par-
ticular, density, speed, distance from the traffic light 
regulating traffic at the transition, etc. The inclusion 
of such characteristics in cluster analysis makes it pos-
sible to achieve maximum “likelihood” when assess-
ing the structure of the traffic flow. Unlike classical 
algorithms, Fuzzy C-means does not assign an object 
unambiguously to any cluster, but compares each clus-
ter with the probability of assigning observed objects to 
it, forming a so-called membership matrix.

The enlarged scheme of the proposed fuzzy clustering 
algorithm is shown in Fig.  3. An important difference 
between the developed algorithm and those previously 
known is that its key characteristics (for example, the 
number of clusters, the radius of the traffic monitoring 
zone, etc.) are calculated using a genetic optimization 
algorithm (RCGA class) as part of solving the main prob-
lem of maximizing output stream traffic. As a result, the 
results of fuzzy clustering directly affect the possibilities 
of finding optimal solutions for the ITS being studied.

Figure 3 uses the following notation:
 ♦ z  [0, 1] is the measure of fuzziness;
 ♦ M(k) is the membership matrix at the kth step of the 
algorithm,  k = 1, 2, ..., |K | where |K |

 
is the maximum 

number of iterations;
 ♦  is a small parameter that is a criterion for the algo-
rithm stopping.

Thus, the proposed fuzzy clustering algorithm is aggre-
gated by the target functional (the total traffic of the 
ITS output stream), with the real-coded genetic algo-
rithm (Fig. 3). RCGA uses heuristic crossing-over and 
mutation operators (for example, LX, SBX, SNUM, 
see [21, 24, 25]) to form new potential solutions with 
the best characteristics. The Fuzzy C-means algorithm 
was built into the ITS simulation model implemented 
in AnyLogic and is executed at each step of the model 
time, providing an assessment of the structure of the 
traffic flow located in the monitoring area of each 
“smart traffic light.”

3. Software implementation  
of the model

The key fragment of the software implementation of 
the proposed ITS simulation model performed in the 
AnyLogic environment is shown in Fig. 4.

An important feature of the software implementation 
of the model (Fig. 4) is the combined use of discrete-
event and agent methods, including those supported in 
the AnyLogic traffic library [28, 29]. In particular, ele-
ments of the carSource and pedSource types provide 
generation of new agents and their addition to the cor-
responding populations of vehicles and pedestrians, 
elements of the SelectOutput type (s1, s2 in Fig. 4b) 
are used to distribute traffic flow along possible routes 
when the vehicle reaches intersections; CarMoveTo 
and pedGoTo elements move vehicle agents and pedes-
trians to a given goal, according to their predefined 
characteristics (preferred speed, intensity of arrival, 
etc.); carDispose and pedSink ensure the removal of 
agents from the corresponding populations and the 
calculation of the output traffic.

4. Results of optimization  
experiments

Optimization experiments were carried out for the ITS 
with spatially homogeneous and periodic flow charac-
teristics with three methods of controlling “smart traf-
fic lights”:
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Fig. 3. Fuzzy clustering algorithm for adaptive traffic light control.
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Fig. 4. Software implementation of the ITS simulation model in AnyLogic:
a) a diagram of a digital road network with “smart traffic lights”

b) a fragment of a discrete-event model of the movement of agents-vehicles  
and pedestrians along specified routes.

а) 

b)
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 ♦ by forming the required duration of phases using a 
genetic optimization algorithm;

 ♦ using local (“weakly adaptive”) switching control.
 ♦ based on the proposed fuzzy clustering algorithm.

For a system with spatially homogeneous flow char-
acteristics, the intensity of arrival of agents and their 
preferred speeds are constants.

The intensity of the arrival of agents the ITS with 
periodic characteristics simulating the presence and 
absence of peak loads is calculated at each moment of 
time tk (tk  :

      (13)

where
 is the random value of the 

intensity of the arrival of agents, set using a truncated 
normal distribution with the mean , standard devia-
tion , lower and upper boundary values  , corre-
sponding to the conditions of extreme traffic;

 is the intensity of arrival corresponding to the condi-
tions of normal traffic;

In a similar way, the average speeds of the agents are 
set. The main model assumptions (initial data) are pre-
sented in Table 1.

At the first stage, using the Monte Carlo type method 
[30], numerical experiments were carried out to assess the 
sensitivity of the target functional (the total traffic of the 
output stream) with respect to the values of the ITS con-
trol parameters with spatially homogeneous and periodic 
flow characteristics (Fig. 5).

It follows from Fig. 5 that the total traffic of the out-
put stream is sensitive with respect to the values of the 
ITS control parameters, both with spatially homogene-
ous and periodic flow characteristics. At the same time, 
the most likely ranges of values of the total traffic of the 
output stream are 1800–1900 agents (vehicles and pedes-
trians).

Table 1. 
Initial data of the simulation model

No. Model parameters Values

1 Length and width of roads, m. 155

2 Number of intersections 4

3 Distance between adjacent 
intersections, m. 65

4 Number of traffic lanes for each road 2

5 The width of the dividing strip, m. 2

6 The number of pedestrian crossings 
regulated by “smart traffic lights” 4

7 Simulation period, min. 20

8 The intensity of the arrival  
of vehicles and pedestrians  
to the ITS with spatially 
homogeneous characteristics at  
each entrance of the road network 
(agents per hour)

vehicles pedestrians

500 1000

9 Preferred speed of vehicles  
and pedestrians within the ITS 
with spatially homogeneous 
characteristics (km/h for vehicles 
and m/s for pedestrians)

100 0.75

10 Parameters for calculating  
the intensity of arrival  
of vehicles and pedestrians 
to the ITS with periodic flow 
characteristics (agents  
per hour)

500 1000

100 100

100 500

1500 1500

100 500

11 Parameters for calculating  
the preferred speed  
of vehicles and pedestrians 
within the ITS with periodic 
flow characteristics  
(km/h for vehicles and m/s  
for pedestrians)

45 1.3

10 0.5

20 1

60 1.5

100 1
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Fig. 5. Estimation of sensitivity (probability density) of the total output stream traffic for the ITS: 
 a) with spatially homogeneous and b) periodic flow characteristics.

Figure 6 shows the dynamics of convergence of the 
objective function obtained using the developed simu-
lation model aggregated by the target functional with a 
genetic algorithm (GA).

The maximum possible values of the total out-
put stream for the ITS with periodic flow charac-
teristics are, on average, less than for the ITS with 
spatially homogeneous characteristics (Fig. 5). The 
obtained suboptimal values of the control parameters 

of the model corresponding to the scenarios of the ITS 
implementation in an enlarged form discussed above 
are presented in Table 2.

It follows from Fig. 6 and Table 2 that the most 
promising way to control “smart traffic lights” is adap-
tive switching control based on fuzzy clustering. The 
proposed approach demonstrates its effectiveness even 
for the ITS with periodic flow characteristics, provid-
ing the best final value of the objective function.

а) 

b)
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Conclusion

This article presents a new simulation model of the 
intelligent transport system (ITS) of a “smart city” 
with adaptive traffic light control. We propose a model 
of the movement of a vehicle ensemble using systems 
of finite-difference equations with a variable struc-
ture, considering the regulatory effect of “smart traf-
fic lights.” To assess the structure of traffic flow and 
adaptive control of “smart traffic lights.” a fuzzy clus-
tering algorithm is proposed, the key characteristics of 
which are calculated using a genetic optimization algo-
rithm (RCGA class) as part of solving the main task of 
maximizing output traffic. With the help of the devel-

oped simulation model, the possibilities of rational 
management of “smart traffic lights” are investigated, 
in particular, for ITS with spatially homogeneous and 
periodic characteristics. As a result, a model example 
demonstrates the greater efficiency of adaptive switch-
ing control based on fuzzy clustering.

Further research will be aimed at designing the 
large-scale agent-based model of the ITS “smart city” 
using the FLAME GPU. 
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Fig. 6. Dynamics of convergence of the objective function (total traffic of the output stream) for the ITS: 
a) with spatially homogeneous and b) periodic flow characteristics.
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Table 2. 
The obtained suboptimal values  

of the control parameters of the model

A system with spatially 
homogeneous flow 

characteristics

A system  
with periodic flow 

characteristics

Collective impact

Total traffic, agents 2392 2125

Duration of traffic 
light phases, sec.

first and second  
traffic lights

red 11.327 22.675

green 25.816 18.061

third and fourth  
traffic lights

red 10.136 18.768

green 11.933 103.071

all traffic lights yellow 1.098 1.874

Local management

Total traffic, agents 2166 2209

Minimum required duration of the main phase, min. 1.839 4.918

Radius of the traffic monitoring zone, m. 31.59 12.25

Radius of the pedestrian traffic monitoring zone, m. 19.13 2.56

Threshold ratio between the number of pedestrians  
at the crossing and the total number of vehicles 88.5 241.7

Adaptive management based on fuzzy clustering

Total traffic, agents 2357 2246

Minimum required duration of the main phase, min. 1.514 3.555

Radius of the traffic monitoring zone, m. 26.11 17.89

Radius of the pedestrian traffic monitoring zone, m. 20.21 25.01

Threshold ratio between the number of pedestrians at the crossing  
and the total number of vehicles (adjusted for inter-cluster distance) 162.5 255.1

Coefficient of significance of the average inter-cluster distance 0.602 1

Number of clusters 3 3
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