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Abstract 

This article studies the predictive abilities of the generative-adversarial neural network approach in 
relation to time series using the example of price forecasting for the nodes of the Russian free electricity 
market for the day ahead. As a result of a series of experiments, we came to the conclusion that a 
generative adversarial network, consisting of two models (generator and discriminator), allows one to 
achieve a minimum of the error function with a greater generalizing ability than, all other things being 
equal, is achieved as a result of optimizing the static analogue of the generative model – recurrent neural 
network. Our own empirical results show that with a near-zero mean square error on the training set, 
which is demonstrated simultaneously by the recurrent and generative models, the error of the latter 
on the test set is lower. The adversarial approach also outperformed alternative reference models in 
out-of-sample forecasting accuracy: a convolutional neural network adapted for time series forecasting 
and an autoregressive linear model. Application of the proposed approach has shown that a generative-
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Introduction

A two-level electricity and capacity market 
operates on the territory of Russia. The day- 
ahead market is the main platform where 

industrial producers purchase electricity and capac-
ity. The Day Ahead Market (DAM) is a system where 
competitive selection of price bids from suppliers and 
buyers of electricity is carried out a day before its actual 
delivery to consumers with the determination of prices 
and supply volumes for each hour of the day1. Marginal 
pricing is carried out on the DAM. In other words, the 
price is determined on the basis of the balance of sup-
ply and demand and applies to all participants in this 
market.

The level of electricity prices directly affects the costs 
of companies. The availability of an accurate forecast of 
electricity prices is necessary for planning the operating 
activities of enterprises representing energy-intensive 

1 Competitive selection of applications is carried out by a commercial operator ATS. The price of DAM  
is determined for each node of two price zones: the first price zone includes the territories of the European 
part of Russia and the Urals (Central, North-Western with the exception of territories belonging to  
non-price zones, Southern, North Caucasus, Volga and Ural Federal districts); the second is the territory 
of Siberia (Siberian Federal District).

2 Significant volatility, a complex structure of seasonality (annual, intra-weekly, intraday seasonality),  
as well as the presence of frequent emissions are a characteristic feature of the prices of the free  
electricity market. The elections can be explained by both abnormal situations in the energy system  
and the conjuncture of consumer industries, which makes it impossible to build a complete structural 
model of the market

3 The symbiosis of two neural networks: a generator and a discriminator. The generator is designed directly 
for making forecasts. The discriminator is designed to distinguish real data from the generator forecast  
and stimulate the generator to learn more efficiently.

4 Simulation modeling methods are usually used to represent the structure and connections of elements  
of complex economic systems, where it is explicitly necessary to take into account the interactions  
of many agents [1–3].

industries, as well as for building financial models. The 
non-linear nature of electricity price dynamics makes 
their forecasting a difficult empirical task2.

There are many empirical works by both domestic 
and foreign researchers where neural network meth-
ods were used to predict the prices of the free elec-
tricity market and demonstrated their superiority over 
linear models. However, recently there is evidence 
that the use of a generative adversarial networks 
(GAN3) approach can further improve the accuracy 
of a neural network built and optimized specifically 
for solving a specific problem.

GAN is both a representative of statistical forecast-
ing methods and simulation methods4. An inexperi-
enced expert using a set of available predictors (a gen-
erative neural network at the beginning of training) 
makes predictions about the price of electricity in a 
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adversarial model with a given universal architecture and a limited number of explanatory factors, subject 
to additional training on data specific to the target node of the power system, can be used to predict prices 
in market nodes for the day ahead without significant deviations.
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particular node, and another neural network (discrim-
inator) learns to distinguish them from real data. Net-
works stimulate each other in the process of learning 
to more and more accurately solve the individual task 
assigned to them. Training continues until the expert 
(generator) forecasts reach the required accuracy in 
accordance with the selected metric.

The purpose of this work is to test the methodol-
ogy for constructing generative adversarial networks 
(GAN) to predict per-node electricity prices in Russia 
on the day-ahead market, as well as to conduct a com-
parative analysis of the quality of forecasts based on the 
GAN methodology and forecasts obtained by alterna-
tive (reference) methods.

The following tasks were solved in the work presented 
here to achieve the goal of the study. First, approaches 
to electricity price forecasting were summarized, includ-
ing those using generative adversarial neural networks. 
Secondly, a description of the data characterizing 
the wholesale electricity market in Russia was given. 
Thirdly, methodological approaches to the develop-
ment of a generative-adversarial neural network model 
for predicting the price of electricity at the level of indi-
vidual nodes of the energy system in Russia were char-
acterized. Fourth, an overview of the empirical results of 
the study was provided, comparing the results of elec-
tricity price forecasting using the Generative Adversar-
ial Neural Network (GAN) methodology and the main 
benchmarks, including the basic recurrent network, 
convolutional neural network and autoregressive model 
(ARIMA), widely used in modeling time sequences in 
the field of economics and finance [4–6]. A summary of 
the results of the study is given in the conclusion.

1. Analysis of the literature 

1.1. Classical approaches to forecasting  
electricity prices on DAM

Various economic-mathematical and simulation 
models were used to solve the problem of forecasting 
electricity prices. For example, domestic scientists in 

[1] used a simulation model based on CGE (general 
economic equilibrium model) to search for optimal 
rates of tariff growth in the electric power industry in 
the regions of the Russian Federation in the regulated 
market segment. The system of equations developed by 
the authors took into account the interaction of many 
economic agents: consumer, producer, importers and 
exporters of electricity and the state.

The system of simultaneous equations was used in 
[7] to predict free market prices. The authors modeled 
spot electricity prices in Scandinavia using a model 
based on 29 equations, which took into account func-
tional relationships between climatic factors, snow 
cover development, river water content (hydroelectric 
power plants are the main source of electricity in Scan-
dinavia) and power system parameters. In [8], a struc-
tural model of spot electricity prices for New Eng-
land in the United States was developed, taking into 
account functional relationships between fuel prices, as 
well as electricity demand and the availability of gener-
ating capacities.

The simulation approach is an effective tool for 
modeling the economy based on an analytical rep-
resentation of the interaction of various agents and 
takes into account the physical processes that affect 
the economy. For example, in [2], a simulation model 
was presented for predicting the dynamics of oil pro-
duction by wells, taking into account the implemented 
and planned geological and technical measures at each 
well. In another case, a simulation approach was used 
to develop a digital twin of a TV production plant [3]. 
However, the use of a simulation approach for fore-
casting, in the case of node prices for DAM, seems 
difficult, since it requires detailed information about 
the topology of the energy network, its parameters and 
operating conditions.

Economic and mathematical approaches in terms 
of time series models are more common for free mar-
ket price forecasting. They can be generalized into two 
groups: statistical and machine learning methods. Sta-
tistical methods usually include additive econometric 
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models [9]. For example, in [5, 6, 10], various varia-
tions of autoregressive models (ARIMA, ARMAX, 
AGARCH) were used to predict free market prices. 
More and more works began to appear with the devel-
opment and popularization of machine learning meth-
ods, where linear econometric models are compared 
with such representatives of machine learning methods 
as support vector models, gradient boosting and neural 
networks [9, 11, 12] , turned out to be less accurate in 
short-term price forecasting.

Many researchers have turned to neural networks to 
predict the prices of the free electricity market [12–14]. 
Most researchers, as of 2020 [15], preferred the mul-
tilayer perceptron5 (MLP). Domestic researchers have 
also repeatedly used this architecture to predict DAM 
prices. For example, Maryasin and Lukashova used 
MLP with two hidden layers to forecast free electricity 
prices in the Yaroslavl region. Zolotova and Dvorkin 
[16] in their study proposed to use a perceptron with 8 
neurons in the hidden layer to predict the hourly equi-
librium price index of the first price zone.

Many works exist in the foreign literature using other 
architectures that have proven themselves in the prob-
lems of time series forecasting in other areas. For exam-
ple, a combination of convolutional and recurrent neu-
ral networks was used to predict prices and demand for 
electricity in [14, 17]. Article [14] shows that this archi-
tecture has justified itself in many areas where forecast-
ing required the extraction of both temporal and spatial 
characteristics of time series. The authors of the study 
[12] proposed using a convolutional neural network with 
extended convolutions6 to predict prices on the whole-
sale electricity market in the Canadian city of Ontario. 
However, recently there is evidence that the use of a 
generative adversarial approach can improve the result 
of a network of any architecture, if this neural network is 
used as a generator in a GAN [18].

5 Multilayer perceptron is an artificial neural network that is characterized by several layers of input  
nodes connected in the form of a directed graph between the input and output layers.

6 Adaptation of a convolutional network for time series forecasting, which allows taking into account  
a wide range of history when forecasting.

1.2. Generative-adversarial  
neural networks

1.2.1. General characteristics

The basic theory of generative adversarial networks 
with examples of practical use can be found in Niko-
lenko’s monograph [19]. A simple generative adver-
sarial network consists of two artificial neural networks 
that interact with each other in turn. The first is a gen-
erator. It spawns objects in the data space. The second 
is the discriminator. It learns to distinguish objects 
generated by the generator from real examples from the 
training sample.

The generator must learn to trick the discrimina-
tor, and the discriminator must correctly distinguish 
between generated examples and real ones. This is the 
adversarial component in the interaction of two net-
works. The above description in terms of game theory 
is a minimax optimization problem, which can be writ-
ten as Equation 1:

     (1)

where D(x) – functional form of the discriminator;

G(z) – functional form of the generator;

pz(z) – data distribution generated by the generator;

pdata(x) – distribution of actual data.

In practice, the functional forms of the discrimina-
tor and generator can be any architecture of neural net-
works. The solution of the minimax problem provides 
alternate training of the generator with fixed weights 
of the discriminator and the discriminator with fixed 
weights of the generator.

Goodfellow and Benji [20] first described and 
put into practice adversarial networks in 2014. Sub-
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sequently, their idea was widely applied in prac-
tice. Adversarial networks have made it possible to 
achieve significant results in such areas as image gen-
eration from a text description [21], the creation of 
drugs [22], the generation of pseudo-realistic time 
sequences with the preservation of distribution high-
lights [23], etc.

For example, in the case of generating an image 
by description, the text is converted into a numeri-
cal feature space using a recurrent encoder, and then 
these features are used as a condition in the GAN 
that generates the image. As a result, for example, a 
person’s face in a photograph can first be displayed 
in the feature space, and then the age feature can be 
changed and a new image generated. Thus, it is pos-
sible to artificially “age” or “rejuvenate” a person.

To create a new drug, the researchers from [22] 
used an adversarial autoencoder to generate mol-
ecules that can be promising candidates for creating 
new drugs based on them.

Time series are a unique object for generative mod-
eling. In [23], it is noted that time series forecasting 
models, such as classical or neural network autore-
gressions, are inherently deterministic. Generative 
models, in turn, allow us to add an element of ran-
domness to the neural network output.

1.2.2. Application of GAN  
for forecasting the electricity market

There are a number of examples of the use of gener-
ative-adversarial networks for forecasting the electric-
ity market in foreign research practice. For example, 
in [24], the authors tested the generative-adversarial 
network model on two data sets: electricity consump-
tion at the level of an individual household and the 
dynamics of the exchange rate. As a result, the genera-
tive-adversarial model in both experiments surpassed 
in accuracy its deterministic equivalent – a generative 
neural network that was trained independently.

In [25], researchers propose a model based on gen-
erative-adversarial networks for predicting node-by-
node prices of a part of the US energy system. The 

neural network model uses spatial-temporal correla-
tions between historical prices at nodes and accepts 
historical prices ordered into a three-dimensional ten-
sor as input data. This tensor consists of a series of 
time-ordered matrices. In turn, each matrix is actu-
ally a map of node prices while preserving the spatial 
location of nodes. The task of the generative model in 
this case was to generate a new matrix with forecasted 
node-by-node prices for electrical energy. The basic 
model was trained to make a forecast for an hour ahead.

In [26], a generative adversarial network is used to 
forecast wholesale electricity prices with an interval of 
30 minutes for the Australian energy market. Unlike 
previous works, the authors do not build a point esti-
mate of the price, but an interval one. The genera-
tive network allowed the authors to obtain predictive 
intervals covering rare and extreme observations more 
accurately than alternative stochastic models.

Following the approach described in [24], we use 
a two-step procedure to develop our own genera-
tive-adversarial model. At the first step, we develop 
and optimize a recurrent neural network to solve the 
problem of predicting the price of electricity in a ran-
dom node of the power system. In the second step, 
we incorporate the resulting neural network into the 
GAN as a generator and check the stability of the 
model on a subset of nodes. This approach allows you 
to narrow the search space of the GAN architecture 
to a discriminator and makes it possible to test the 
hypothesis that it is possible to improve the perfor-
mance of the underlying neural network by including 
it in the GAN architecture.

2. Data

The analysis is carried out on the basis of hourly 
reports of the Trading System Administrator on equi-
librium prices in the largest nodes of the energy sys-
tem [27]. The database covers the period from April 13, 
2019 to December 31, 2022 and contains information 
about 7215 nodes in 66 regions of the Russian Federa-
tion. The dynamics of averaged prices for all nodes of 
the energy system of the Russian Federation is shown 
in Fig. 1.

Short-term forecasting of electricity prices using generative neural networks 11



BUSINESS INFORMATICS        Vol. 17        No. 3        2023

It is possible to note a tendency to spatial correla-
tion within one region despite the stochastic behavior 
of each of the node price series. An illustration of this 
is the clustering of statistical characteristics of prices: 
the average and standard deviation for the period under 
review on the example of some subjects of the Russian 
Federation (Fig. 2).

There are a number of features that need to be taken 
into account when forming a list of explanatory vari-
ables:
1. Significant autocorrelation of prices. This phenom-

enon is described in detail in the work of Zolotova 
and Dvorkin [16] at the level of price zones. Our 
own analysis showed that in particular cases, at the 
node level, the picture is generally similar.

Fig. 1. Average prices for DAM for all nodes of the energy system of the Russian Federation.

Fig. 2. Clustering of statistical characteristics of nodes within one region.
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Fig. 3. Diagram of the range of average DAM prices depending on the quarter  
(the calculation was made for all regions in the sample,  

emissions are shown for individual regions of the Russian Federation).

2. Annual seasonality. The seasonal component 
changes synchronously in most regions of Russia. 
Price growth is observed in the third quarter, which 
is associated with the dynamics of the all-Russian 
production cycle and the beginning of the heat-
ing period (the reasons for the annual seasonality 
are analyzed in more detail in the work of Prok-
horova et al. [28]). The exceptions are the Krasno-
yarsk Territory and the Irkutsk Region (see Fig. 3),  
in which, on the contrary, there is a decrease in 
prices in the 3rd quarter, which may be due to 
the availability of relatively cheap electricity from 
hydroelectric power plants in the regions.

3. The behavior of prices within the week at the 
regional level has some relatively constant fre-
quency: in most regions on Monday and Friday 
prices are at the maximum level, on Saturday – 
at the minimum. The exceptions are the Irkutsk 
region and the Republic of Buryatia, where prices 
on Saturday are on average the highest. However, 
during the working week, the dynamics may differ 
from region to region. On public holidays, there is a 
significant decrease in prices in all regions, with the 
exception of a number of regions of the North Cau-
casian Federal District (Fig. 4).

4. Nonlinear dependence on temperature. The above-
mentioned study by Prokhorova et al. [28] noted 
the need to take into account both steady changes in 
temperature dynamics throughout the year affect-
ing the annual seasonality in electricity consump-
tion, and weather factors that take into account 
deviations from the norm.

3. Research methodology

Analysis of price dynamics in the nodes of the ener-
gy system of the Russian Federation made it possible to 
reveal the presence of spatial autocorrelation. The sta-
tistical characteristics of prices differ more and more as 
the nodes move away, which is associated with chang-
ing conditions of supply and demand. For this reason, 
a predictive model can be specific to: 
a) node and take into account the spatial lag (spatial 

autocorrelation), 
b) region and have a multiple output – a forecast 

simultaneously in all nodes of the regional energy 
system, where the format of the input data involves 
taking into account geographic connectivity. 

In the second case (option b), a significant number 
of observations over time is required to obtain a mod-
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el with a high generalizing ability. Unfortunately, the 
limitations of the available data retrospective on the 
website of the Trading System Administrator do not 
allow training such a model. Therefore, in our study, 
we will focus on the first option (option a), which in-
volves building a universal neural network architec-
ture, which, if trained on node-specific data will allow 
us to predict prices for any individual node of the en-
ergy system without significant error variance.

Taking into account the above data features, the fol-
lowing factors will be used among the explanatory vari-
ables: 

 ♦ lagged values of electricity prices in the target node;
 ♦ lag values of electricity prices of the three nearest 
nodes within the regional network;

 ♦ dummy variables for weekends and holidays;
 ♦ average daily temperature in the region;
 ♦ temperature deviation from moving average.

It is important to note that the node model can also 
include locality-specific factors, for example, the water 

7 In order to save computing resources, a limited number of nodes are used for testing the model.  
This is because each region has a different number of nodes with full data coverage (up to 546 nodes).

8 5 nodes ∙ 66 regions.

level of rivers, which is relevant for the regions of the 
Urals and Siberia [16], the capacities of industrial con-
sumers, and others. However, the lack of statistics in the 
required context does not provide this opportunity.

As noted above, at the first step of modeling, a static 
recurrent neural network is formed which is optimized, 
and its stability is checked at random nodes of the 
power system. At the second step of the modeling, a 
GAN is formed based on the existing architecture of a 
static recurrent neural network, which is used as a gen-
erator. After optimizing the discriminator architecture 
and GAN hyperparameters, the accuracy of the pre-
diction results of the constructed model is compared 
with alternative benchmarks. 

Initially, all models are trained in parallel on 5 ran-
dom nodes in each region7. Thus, each model is sequen-
tially trained at 330 nodes8, and the average error and its 
variance obtained from the test data are used to compare 
the quality of the models. Accordingly, data preprocess-
ing for all nodes is unified: the sample is divided into 
training, validation and test samples in the ratio of 80%, 
10% and 10%; data standardization and tensor transfor
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Fig. 4. Diagram of the range of averaged DAM prices by days of the week and holidays  
(the calculation is carried out for all regions in the sample;  

emissions are shown for individual regions of the Russian Federation).

1600

1400

1200

1000

800

Zabaikal Territory
Irkutsk Region
Krasnoyarsk Territory
Buryatia Republic
Dagestan Republic
Ingushetia Republic
Crimea Republic
Chechen Republic

Monday            Tuesday           Wednesday            Thursday             Friday                Saturday            Sunday                     Holiday day

Mean price



BUSINESS INFORMATICS        Vol. 17         No. 3         2023

Short-term forecasting of electricity prices using generative neural networks 15

mation in the format of sliding windows from the origi-
nal time series (the dimension of the time window is a 
hyperparameter).

3.1. Building a static  
generator model  

(the first step of modeling)

The static model is a two-layer recurrent neural net-
work GRU1 with 55 cells in the first layer and 20 in 
the second2. The first layer at the output preserves the 
dimension of the data in time for the next recurrent 
layer. The second layer transmits a vector of dimen-
sion 3 as output data. Thus, the initial matrix of input 
data of dimension (7 x 8), where 7 is the size of the time 
window, 8 is the number of explanatory variables, the 
model maps into a space of dimension (1 x 3). The sum 
of the elements of this vector is a forecast of the price of 
electricity for one day ahead (the elements of the vector 

1 Gated Recurrent Units is a type of recurrent neural network designed to model time sequences.

2 The number of neurons in each layer, the type of activation function and the gradient descent step were 
determined as a result of enumeration on a given set using the KerasTuner neural network optimization 
package.

3 Experiments to determine the underlying architecture were made on the data of a randomly selected node. 
Later, the model was further trained for each node individually.

are summed taking into account the weights, the values 
of which are selected during the training of the model). 
The hyperparameters of the model (the size of the time 
window that determines the number of time lags for all 
variables, the number of elements of the training sample 
used to calculate one iteration of gradient descent) were 
determined empirically as a result of iteration. The cri-
terion was the standard error on the test sample3.

3.2. Building a GAN  
(second modeling step)

The generative-adversarial model is a generator and 
discriminator connected in series (Fig. 5). A previously 
defined model of a recurrent neural network is used as 
a generator. A noise vector is added to the input data 
matrix as a separate factor, which prevents the generator 
from retraining and allows adding a stochastic element 
to the output of the model.

Noise(7,1)

Model error:
 MSE +  LogLos

Discriminator

Generator MSE( , )

LogLos(  )

Fig. 5. The device of a generative-adversarial model  
used to build a forecast of node-by-node electricity prices on the DAM.
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The discriminator architecture is a convolutional 
neural network with one hidden layer that accepts 
dimension 7 as input. The first 6 elements of the vector 
are the actual price values in retrospect, and the last 
element is the generator forecast or the actual price, 
depending on the template being submitted to the input. 
The discriminator learns to classify incoming data:  
(X, Y) – “True” or 1 and (X, G(X)) – “False” or 0. The 
discriminator learns using the error function (Equation 
2), which is based on cross-entropy (BCA – binary 
cross entropy), Equation 3:

          LD = lbce(D(X,Y), 1) + lbce(D(X,G(X)), 0), (2)

            lbce = –(y  log(p) + (1 – y)  log(1 – p). (3)

To train the generator, a two-component error 
function is used, consisting of cross–entropy and 
mean squared error (MSE – mean squared error), 
Equation 4.

      (4)

The cross-entropy metric is calculated by assigning 
the “True” label to the vector with the predicted price 
value. This is necessary to mislead the discrimina-
tor and allows the generator to pick up weights in the 
learning process that complicate the task of training 
the discriminator in the subsequent iteration, which 
introduces an element of “competition” into the 
learning process. It is important to note that theoreti-
cally adding the MSE component to the error func-
tion is not strictly necessary [29]. We are adding MSE 
for faster generator convergence and shorter training 
time.

As mentioned above, the discriminator and gen-
erator are trained alternately until the specified accu-
racy of the price forecast is achieved. This provides a 
solution to the original minimax problem. A general 
description of the entire learning process is shown in 
pseudocode (Table 1).

More detailed information about the algorithm of 
generative adversarial network learning is contained  
in [30, 31].

Thus, the discriminator learns to distinguish gen-
erated samples from real data in the learning process. 
At the next iteration of training, the generator strives 
to improve its forecast so that the probabilistic out-
put of the model is closer to the “Truth” with fixed 
discriminator weights. This approach allows you to 
change the gradient trajectory in the learning process 
and come to a different optimum in comparison with 
the static model, where only the root-mean-square 
error is used [32].

The results of the GAN model are compared with 
“reference” alternative models: ARIMA autoregres-
sion, basic recurrent neural network, two-layer con-
volutional neural network (CNN). The architecture 
of the latter is based on the model proposed in [33].

4. Empirical results

We trained the discriminator five times more than 
the generator during each training iteration. This 
allows the discriminator to be somewhat ahead of the 
generator in accuracy and distinguish the generated 
data from the real ones. Fig. 6 shows the process of 
learning a generative-adversarial model for some ran-
dom node.

The left axis shows the total error of the model, 
which is the weighted sum of the error of the discrimi-
nator and the generator (mse + logloss). The value 
of the discriminator error at each training iteration 
(logloss) is shown on the right axis.

In order to test the stability of the proposed model, 
the following experiment was conducted: 5 nodes 
of the power system were randomly selected in each 
region. The only selection criterion is the absence of 
gaps in the data on the analyzed time horizon. Next, 
a set of explanatory variables was formed for all nodes 
in accordance with a unified procedure, data was pre-
processed, and then the previously saved generative 
model was further trained on the data of each of the 
5 nodes. Based on the results of the experiment, the 
error of the electricity price forecast was calculated on 
a test sample (in parallel, training and error calculation 
were carried out for a static generator model and other 
benchmarks).
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Table 1.
General algorithm of generative-adversarial  

neural network training

Setting conditions: gradient descent step ρD, ρG; error function weights parameters for the 
generative model λ1, λ2; random initialization of weights in discriminator and generator models.

While (until the algorithm converges):
 Discriminator Training (D):
 Getting M samples from a training sample: X train:
 (X, Y ) = (X 1, Y 1 ), ..., (X m, Y m )  X train

 Stochastic gradient descent step and updating of weights D at fixed weights G::

      

 Generator Training (G):

 Getting M new samples from X train:
 (X, Y ) = (X 1, Y 1 ), ..., (X m, Y m )  X train

 Stochastic gradient descent step and updating of weights G at fixed weights D:

 

End While

Fig. 6. The value of errors of the generative-adversarial model  
in the learning process on a training sample.
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The results of the experiment showed that the gen-
erative-adversarial model demonstrates the smallest 
average error on the test sample and the minimum 
spread of error values for individual nodes of the 
power system. Table 2 shows the average errors on the 
test sample of the models under consideration and 
their standard deviations.

In [25], the authors associate the superiority of 
GAN with the ability to provide the required gradi-
ent for optimizing the generator during training: the 
gradient directed by the discriminator allows one to 
achieve a wider minimum than, other things being 
equal, is achieved as a result of optimizing the static 
analogue of the generative model. Our own empirical 
results also support this thesis, since with a near-zero 
error on the training set achieved simultaneously by 
a static generator model and a GAN, the error of the 
latter on the test set is lower.

The average errors of the GAN model and their stand-
ard deviations are visualized in Fig. 7: the color grada-
tion on the conditional map of regions corresponds to 
the value of the average error calculated for five ran-
domly selected nodes in the corresponding region of the 
Russian Federation (see the left part of Fig. 7) and the 
variance of average errors (see the right part of Fig. 7).

The model demonstrates the best results in most 
of the regions of the Central Federal District, the 
Northwestern Federal District and the Volga Federal 
District. In turn, the model demonstrates the largest 
average error in such regions as the Republic of Tatar-
stan, Bashkiria, a number of regions of Siberia and 
the Caucasus. The high variance of the average error 
is also manifested mainly in these regions. The unsat-
isfactory performance of the model in these regions 
seems to be due to the insufficiency of a set of explan-
atory factors, which in all cases was standard. It is 
possible that energy bridges with other countries con-
nected with the domestic energy system are important 
for pricing in border regions; for the central regions of 
Siberia, the water level of rivers is an important factor, 
since a significant share of generation falls on hydro-
electric power plants.

It is also important that the test part of the sam-
ple (from August 19, 2022 to December 31, 2022) 
accounts for a period with a clear structural shift – a 
sharp increase in electricity prices at the end of 2022 in 
regions such as Irkutsk, Tyumen and Tomsk Regions, 
Krasnoyarsk Krai, Stavropol Krai, Krasnodar Krai. 
The sharp increase in the price trend in this case was 
due to conjunctural factors, the influence of which 
could not be present in the training sample. 

Table 2.
Comparative table of averaged errors and their spread  

when applying the model to five random nodes in the analyzed regions

Indicator
Error on the test sample

GAN GRU CNN ARIMA

MAE
mean 0.0497 0.062 0.0681 0.0724

std 0.0002 0.0009 0.0063 0.0092

MAPE
mean 0.092 0.0973 0.1055 0.1114

std 0.0005 0.0018 0.0113 0.0242

MSE
mean 0.0046 0.0059 0.0073 0.0082

std 0 0.0002 0.0013 0.0034

 18 Andrej S. Kaukin, Pavel N. Pavlov, Vladimir S. Kosarev



BUSINESS INFORMATICS        Vol. 17         No. 3         2023

Fig. 7. The average error of the generative-adversarial model in the test sample (graph below)  
and its variance (right graph) for five random nodes in the region.
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The hypothesis of the group equality of the Levene 
variances for the root-mean-square errors obtained at 
randomly selected nodes of the power system within 
a single region. The null hypothesis of the test is that 
“all subsamples have equal variances”. When outli-
ers are excluded (12 regions with the largest standard 
deviation of error), the null hypothesis of the test is 
not rejected for the remaining 54 regions. Thus, for 
most regions, the proposed architecture of the gen-
erative model is universal and is able to provide a rela-
tively low error on the test sample for various nodes of 
the country’s power system.

Conclusion

The results of the study demonstrate that the pro-
posed generative-adversarial network can be used to 
predict prices in DAM nodes for the day ahead with-

out significant deviations in accuracy for 54 of the 66 
regions of Russia under consideration. The network 
architecture is universal (it does not change during the 
transition from region to region of the Russian Federa-
tion) and uses a limited number of explanatory factors. 
The network needs to be retrained on data specific to 
the target node. The neural network model included 
the following set of variables: historical price values in 
the target and geographically close to it nodes of the 
power system (node-by-node prices in the electric-
ity market are correlated both spatially and in time), 
ambient temperature and seasonal factors. 

The proposed generative-adversarial model reduced 
the mean square error by 22% on a test sample of a 
static generator model based on a recurrent neural 
network, and also surpassed the quality of alternative 
benchmark models: convolutional neural network and 
autoregressive linear model (ARIMA). 
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