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Abstract

The article introduces a long-term investment algorithm that identifies optimal solutions in lower 
dimensional spaces constructed through principal component analysis or kernel principal component 
analysis. Portfolio weights optimization is carried out using the Markowitz method. Hyperparameters of the 
model include window size, smoothing parameter, rebalancing period and the fraction of explained variance 
in dimensionality reduction methods. The algorithm presented incorporates weights regularization taking 
into account portfolio rebalancing transaction costs. Hyperparameters’ selection is based on the Martin 
coefficient, which allows us to consider the maximum drawdown for the suggested algorithms. The results 
demonstrate that the proposed algorithm, trained from 1990 to 2016, shows higher returns and Sharpe 
ratios compared to the S&P 500 benchmark from 2017 to 2022. This indicates that weights optimization can 
improve the algorithm’s performance through rebalancing.
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Introduction

The rapid development of financial markets is 
one of the most significant global trends now-
adays. In the first two decades of the 21st cen-

tury, market capitalization increased more than three 
times [1]. In the United States alone, from 2017 to 
2021, the number of client investment accounts at the 
three largest brokerage firms – Charles Schwab, Fidel-
ity Investments and Robinhood – nearly doubled [2]. 
This drive by private investors to actively seek promis-
ing investment opportunities has spurred researchers’ 
interest in finding the optimal investment portfolio to 
maximize returns while accounting for financial risk.

Considerable progress in portfolio optimization was 
achieved with the advent of Markowitz’s portfolio the-
ory [3]. The classical Markowitz optimization problem 
involves finding an asset allocation in a portfolio that 
minimizes risk at a fixed expected return level. More 
generally, the search for an optimal asset allocation oc-
curs with a given balance coefficient between risk min-
imization and return maximization, corresponding to 
the investor’s degree of risk aversion.

The algorithm for finding the optimal asset alloca-
tion in the Markowitz problem is based on estimating 
the average returns of stocks and their covariance ma-
trix from historical data. However, this algorithm has 
several limitation; in particular, the assumption that 
historical returns and risks of stocks will maintain their 
distribution in the future is not always accurate [4]. 
Moreover, Markowitz diversification is vulnerable to 
outliers due to the instability of average stock returns 
[5]. Outliers can also occur in the covariance matrix of 
returns used for risk assessment.

One approach to addressing the issues mentioned, as 
discussed in the literature, involves dimensionality re-
duction methods such as Principal Component Analy-

sis (PCA) and Kernel Principal Component Analysis 
(Kernel PCA). These methods enhance the Markowitz 
algorithm by eliminating outliers in the covariance ma-
trix and identifying key components to focus on when 
assembling a portfolio. PCA helps us to identify the 
most significant directions in the data space (principal 
components) that explain the highest variance. By re-
ducing dimensionality, outliers have less impact on the 
principal components, as PCA considers the overall 
variability of the data. These approaches help to reduce 
noise in the data and improve portfolio optimization 
quality, as demonstrated in works [6, 7]. An example 
of using Kernel PCA in the Markowitz problem is pre-
sented in [8].

This paper addresses a generalized Markowitz prob-
lem that includes the commission an investor pays for 
rebalancing the portfolio and proposes an algorithm to 
solve this optimization problem. The algorithm pre-
processes asset returns to remove noise, then con-
structs a portfolio using exponentially smoothed stock 
returns, and optimizes a linear combination of risk and 
return while accounting for the commission.

To overcome the limitations of the classical solution 
for the Markowitz problem, this study examines four 
variations of the proposed algorithm: without dimen-
sionality reduction, with PCA, and with polynomial 
and Gaussian kernels in Kernel PCA.

In the aforementioned studies, the historical time 
horizon for determining expected returns and the co-
variance matrix was empirically determined. Studies 
[9–17] discuss approaches to predicting expected re-
turns and the covariance matrix using machine learn-
ing methods and statistical models like GARCH. In this 
paper, to optimize the performance of the Markowitz 
algorithm, we propose optimizing the model’s hyper-
parameters to determine the optimal portfolio based 
on historical data: portfolio rebalancing frequency, 
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window size, the number of selected companies for 
further analysis, and the dimensionality reduction pa-
rameter in Kernel PCA.

Given the substantial number of hyperparameters in 
the algorithm, traditional parameter tuning methods 
(GridSearch and RandomSearch) may not yield opti-
mal results. Therefore, we also use the Bayesian opti-
mization method based on Gaussian processes for com-
parison [18]. Bayesian optimization is an algorithm for 
finding the optimal parameter values of a function when 
only limited information about the function and its be-
havior is available. The essence of the method lies in an 
iterative sequence of selecting subsequent trial points 
based on a probabilistic model that approximates the 
unknown function. This method allows for finding the 
optimal solution using a relatively small number of it-
erations, as the algorithm actively adapts to information 
obtained from previous iterations. In the context of this 
study, the function to be optimized is the Martin index, 
introduced in [19]. Thus, for each of the four algorithm 
variations, parameter tuning is conducted using both 
random search and Bayesian optimization.

The proposed algorithms were trained on the return 
data of approximately 300 stocks from 1990 to 2016. 
To evaluate the effectiveness of each of the eight algo-
rithm variations, the study compared various perfor-
mance metrics of the resulting portfolios and bench-
marked them against the S&P 500 index. This index 
is a classic benchmark for developing algorithms as it 
is considered the best indicator of large-cap compa-
ny stocks [20] and reflects the overall state of the US 
economy [21, 22]. It has been shown in [23] that the 
weights in the classical Markowitz algorithm are also 
related to this benchmark.

The research results indicate that the most effective 
algorithm is the variation using the Gaussian kernel 
in Kernel PCA tuned through Bayesian optimization. 
The portfolio optimized using this method shows the 
highest return and the Sharpe ratio, due to the lowest 
drawdown during the COVID-19 pandemic outbreak, 
also exhibited the highest volatility compared to other 
variations. Additionally, it is shown that from 2017 to 
2022, all proposed algorithms achieve higher returns 
than the S&P 500 index.

The paper is structured as follows: Section 1 presents 
the formulation of the optimization problem, Section 2 
provides a description of the algorithm for solving this 
problem and its variations, Section 3 details the met-
rics for comparing algorithm variations, Section 4 de-
scribes the data used, Section 5 presents an analysis of 
the research results.

1. Optimization problem

Consider a financial market model with N assets 
(stocks), whose returns are random variables ri, i = 1, 
..., N. The vector of expected stock returns is denoted 
as , and the covariance matrix of 
stock returns is denoted as

.

An investor forms a portfolio from these assets with 
stock weights wi  0, i = 1, ..., N where the condition  
wi  0 corresponds to the prohibition of short sales. Let 

 be the investor’s risk aversion coefficient. Then the 
transformed Markowitz optimization problem for this 
investor takes the form:

                         (1)

According to [24], this problem is equivalent to 
the classical Markowitz problem, except for the fixed 
parameters: in the classical problem, the expected 
return parameter is fixed, while in the transformed 
problem, the balance coefficient between risk 
minimization and return maximization is fixed. In the 
algorithm considered  = 0.05 however, in general, this 
parameter can be adjusted, with smaller  emphasizing 
risk minimization and larger  emphasizing return 
maximization.

In this paper, we consider a more general Markowitz 
optimization problem, which includes a rebalancing 
commission λ. Thus, if P is the rebalancing period and  

 is the stock weight distribution from the previous 
period, the optimization problem (1) takes the form:
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               (2)

We define the weight distribution vector at time 0 as  
.

2. Algorithm 

2.1. Algorithm stages

The optimization algorithm receives input data on 
stock prices over a specified period. The output of the 
algorithm is the weights wi – the proportions of the 
corresponding assets in the investor’s portfolio, which 
are rebalanced at a specified frequency, provided to the 
algorithm as a hyperparameter.

The operation of the algorithm, as presented below, 
can be broadly divided into two parts: hyperparameter 
tuning of the portfolio and selection of optimal 
weights corresponding to these hyperparameters. The 
hyperparameter tuning involves selecting parameters 
for data preprocessing (portfolio rebalancing frequency, 
window size factor, the number of selected companies 
for further analysis) and dimensionality reduction 
parameters (explained variance ratio and kernel 
hyperparameters in Kernel PCA).

Weight selection is performed using the fit method 
on a training dataset of stocks over a certain period and 
includes the following stages.

Data filtering. In the first stage, we filter data to keep 
for the analysis only observations within the specified 
time window.

The window size is determined by two hyperparam-
eters: period_change_portfolio – the portfolio rebal-
ancing period, and size_of_window_rank – the win-
dow size factor. The window size is expressed as the 
product of these parameters. This functional relation-
ship allows the window size to vary in conjunction with 
changes in the portfolio rebalancing period.

Typically, the window size factor ranges from two to 
five, corresponding to a window of approximately 2–5 

rebalancing periods. For instance, in [25], a 5-year 
window is used to analyze an asset’s annual beta, 
whereas in [26], a moving window of 1000 days is used 
to evaluate portfolio rebalancing parameters every 250 
days. Applying window filtering allows for the con-
sideration of the most recent and relevant data while 
excluding outdated information.

Stock selection for portfolio construction. At this 
stage, the profitability of stocks is evaluated for inclu-
sion in a portfolio consisting of the most profitable 
ones. 

To assign greater weight to the most recent data, 
we apply exponential smoothing with a parameter  
α  (0, 1). In the algorithm, the exponential smooth-
ing parameter is set to α = 0.99. If the application of 
filtering in the previous stage is equivalent to multi-
plying all observations within the window by 1, and 
outside it by 0, then exponential smoothing can be 
represented as multiplying returns by , where  
represents the number of trading days that have 
passed from the date under consideration to the pre-
sent moment. This approach ensures a higher weight 
for recent data while preserving the influence of ear-
lier periods, with diminishing weight as one moves 
further back in time. 

To select stocks to be included in the portfolio, we 
calculate the weighted average return for each stock 
using exponentially smoothed weights. The calcula-
tion is performed according to the formula:

where T is the window size, rit – return of the stock i 
at time t.

After computing the weighted average returns, we 
sort the stocks in descending order, and select the top 
n_top_companies for inclusion in the portfolio. The 
number of selected stocks is a hyperparameter of the 
algorithm.

Dimensionality reduction. This step is applied only 
for variations of the algorithm that use PCA or Ker-
nel PCA. As noted above, these methods enhance 
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the Markowitz algorithm by removing outliers in the 
covariance matrix and isolating components. These 
components are subsequently used by the algorithm 
in portfolio formation.

When applying these dimensionality reduction 
methods, the number of components to include in 
the model is initially determined. This number is 
based on the explained variance of the first 1, 2, ..., 
n_top_companies components according to the hyper-
parameter var_ratio, which dictates the proportion of 
explained variance. The proportion of explained vari-
ance for d components is denoted as δd, which is the 
ratio of the sum of squared deviations of the observed 
data from their projection onto the principal compo-
nents to the sample variance of the data. A high resid-
ual variance indicates that the principal components 
do not explain a sizable portion of the data variability, 
possibly due to additional unaccounted factors in the 
model. The number of components d is determined as 
the number where δd ≥ var_ratio, but δd–1  < var_ratio.

The identified number of components and hyper-
parameters are then passed to the dimensionality 
reduction method, which is trained on the training 
data. This process reduces the data dimensionality 
while preserving key characteristics and removing 
outliers.

Kernel PCA Hyperparameters:
 ♦ kernel – specifies the kernel type; the algorithm 
considered only the Gaussian kernel “rbf”:

,

and polynomial kernel “poly”:

;

 ♦ kerneldegree – the degree of the polynomial kernel 
(q in the polynomial kernel formula);

 ♦ kernelgamma – the scale parameter (γ in the above 
formulas);

 ♦ kernelcoef0 – the constant of the polynomial kernel 
(c  in the polynomial kernel formula).

Stock allocation in the portfolio. After forming a set 
of stocks for inclusion in the portfolio, the algorithm 
determines their weights.

The algorithm solves the problem (2), where the last 
term essentially acts as regularization of the weights. 
We set the parameter λ, which accounts for the rebal-
ancing commission of the portfolio, to be equal to 1%.

Additionally, if dimensionality reduction meth-
ods are used, it is necessary to transition from the 
latent space to the original space by inverse trans-
formation   for solving the problem. Let  
be the vector of average returns in the latent space, 
and C be the sample covariance matrix in the latent 
space. Then the transformed optimization problem 
takes the form:

    (3)

In the case of PCA, the inverse transformation is 
performed by multiplying the weights by the compo-
nent matrix . This is a quadratic program-
ming problem, which is effectively solved using the 
cvxpy package [27].

In the Kernel PCA method, to find the vector  
 in the original space we search for the approxi-

mate preimage of the vector   by solving a minimiza-
tion problem with Ridge regression (see [28]):

This problem is not a quadratic programming prob-
lem and is solved less accurately using the scipy.opti-
mize library [29].

The inverse transformation of the weights   
follows the formulas above, along with truncating 
weights based on a threshold value: if wi < treshold, 
then wi = 0. We set the threshold value around 10–6 to 
eliminate weights that are too small to be practically 
achievable, as whole stock lots must be purchased.

 60 Alexander V. Kulikov, Dmitriy S. Polozov, Nikita V. Volkov



BUSINESS INFORMATICS        Vol. 18         No. 3         2024

Portfolio return estimation. After training the algo-
rithm on the training dataset, we can construct a 
portfolio using the obtained weights and evaluate its 
performance on the test dataset. However, a portfo-
lio with constant weights performs worse over time 
because the distribution of stock returns changes. 
Therefore, it is periodically necessary to rebalance the 
portfolio. Every period_change_portfolio trading day, 
we retrain the algorithm on both the training data and 
the known test data. The portfolio change period in 
the algorithm was chosen to be relatively long, rang-
ing from three to four months to several years. This 
is because the Markowitz method performs well over 
long periods with infrequent portfolio changes. For 
instance, in [30], minimum-risk portfolios, i.e., clas-
sic Markowitz portfolios, were rebalanced 2–3 times 
a year.

We evaluate the portfolio return using the predict 
method, which takes the trained algorithm and test 
dataset as inputs. The output is a dataframe indexed 
by time and containing the calculated returns as a col-
umn. This allows for visualizing the results as a time 
series of portfolio returns and calculating economic 
indicators using the score method.

2.2. Hyperparameter  
tuning

In this study, we consider four variations of the ini-
tial algorithm: no dimensionality reduction, dimen-
sionality reduction using PCA, and Kernel PCA with 
polynomial and Gaussian kernels. For each method, 
we optimize hyperparameters using two approaches: 
RandomizedSearchCV [31] and Bayesian optimization. 
This resulted in eight algorithms with different sets of 
hyperparameters.

The following hyperparameters were tuned in the 
methods for finding optimal weights:

 ♦ for the method without dimensionality reduction, 
only the hyperparameters of the pre-processing of 
the returns’ matrix were selected. These parameters 
include:

◊ the portfolio change period (ranging from three 
months to two and a half years);

◊ the window size factor (from 2 to 5);
◊ the number of top companies selected based on 

average returns (from 50 to 200); 
 ♦ for the PCA method, in addition to the above 
parameters, the explained variance ratio was also 
tuned (from 80% to 95%); 

 ♦ for Kernel PCA with a polynomial kernel, the 
above hyperparameters were tuned along with the 
polynomial kernel parameters:

◊ degree (from 2 to 4);
◊ constant term (from 0.5 to 1);
◊ order parameter (from 0.02 to 0.04); 

 ♦ for Kernel PCA with a Gaussian kernel, apart from 
the pre-processing parameters and the explained 
variance ratio, the order parameter was tuned (from 
0.001 to 0.1). It is also noteworthy that, according 
to article [8], a portfolio formed using Kernel PCA 
with a Gaussian kernel is more risky. Therefore, we 
decided to diversify the risk less and optimized the 
number of n_top_companies based on returns in the 
range from 5 to 30 (for RBF and Bayesian RBF).

3. Portfolio comparison  
metrics

To compare portfolio optimization methods, we 
consider several metrics.

Portfolio value. The ratio of the current portfolio 
price to the initial price:

Average rate of return (AR). The average investment 
profit earned per year. This measure is used for comparing 
the returns of different investment instruments. Let L be 
the total investment period in years, and T be the total 
number of trading days. The average annual return is 
then

VaR (value at risk) at level α. The inverse sample 
α-quantile of the portfolio returns
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Risk premium (excess return). The gain from 
holding the portfolio compared to a risk-free asset. 
For a portfolio  with asset weights , relative returns 

, and risk-free rate r   ft at time t = 1, ..., T:

Portfolio standard deviation. The sample standard 
deviation of the excess return, calculated as

Sharpe ratio. The ratio of the risk premium to the 
standard deviation of the portfolio:

Relative drawdown. The relative difference between 
maximum portfolio value up to the current moment and 
its current value. If  is the portfolio price ratio at 
time t to the initial price, then

Martin ratio (Ulcer performance index, UPI) [10]. 
The ratio of the portfolio’s excess return to the root 
mean square relative drawdown:

The Martin ratio is used for hyperparameter tuning 
during the validation stage.

4. Data

The study utilized data sourced from Yahoo’s data-
base using the yfinance library [32]. The analyzed 
assets included stocks of companies listed in the S&P 
500 index, as well as 500 randomly selected stocks 
from Yahoo’s database. This asset selection ensures 

that the weights obtained from the algorithm are 
independent of the weights built solely on the bench-
mark index. The constructed dataset includes the 
daily price dynamics of 1000 stocks over the period 
from 1990 to 2022.

We conducted preliminary data filtering to 
exclude stocks with more than 10% missing values 
across observations. For the remaining observations 
with missing values, the return was estimated as the 
average return for the entire preceding historical 
period. Additionally, we excluded from the analy-
sis stocks with high volatility, whose price changed 
by more than twice compared to the previous day at 
least once.

After filtering, 300 stocks representing various sec-
tors were selected. These included companies from 
the IT sector such as Apple and Microsoft; the finan-
cial sector including JPMorgan Chase and Citigroup; 
and the healthcare industry including Johnson & 
Johnson and Pfizer. Moreover, the list included con-
sumer goods companies such as PepsiCo, The Coca-
Cola Company, McDonald’s, Procter & Gamble, 
and Walmart.

The data obtained was divided into two periods: 
train period (1990–2016) and test period (2017–2022). 
Hyperparameter tuning was performed using cross-
validation for time series. This cross-validation method 
involves dividing the data into sequential blocks based 
on time. The model is trained on all preceding data 
blocks and validated on the subsequent block (see  
Fig. 1). We repeat this process multiple times and using 
the TimeSeriesSplit method from sklearn [33].

5. Results

The configurations of the selected hyperparameters 
for all methods are presented in Table 1. It is notewor-
thy that for most methods, the optimal portfolio rebal-
ancing period is approximately six months (180 days), 
potentially indicating a global optimality for this time 
interval. Interestingly, the kernel scale factor for kernel 
models is roughly the same, around 0.04.
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Fig. 1. Cross-validation scheme by TimeSeriesSplit from sklearn.

Table 1.
Selected hyperparameters for all 8 algorithms
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No optimization 3.20 190 97 – – – – –

PCA 4.90 192 150 0.935 – – – –

Poly KPCA 2.10 249 86 0.86 poly 0.04 4 0.77

rbf 4.90 170 27 0.91 rbf 0.04 – –

Bayes 4.79 190 100 – – – – –

Bayes PCA 3.45 189 71 0.891 – – – –

Bayes Poly KPCA 3.37 190 66 0.921 poly 0.034 2 0.844

Bayes rbf 2.44 188 17 0.764 rbf 0.044 – –
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After the hyperparameter tuning processes using 
Bayesian optimization and random search for the four 
methods, we compute the return on the test sample. 
The return graphs on the test dataset for all eight algo-
rithms and the baseline S&P 500 benchmark are pre-
sented in Fig. 2 and are also available on an interactive 
HTML chart [34].

In addition to the graphs, we calculate economic 
indicators from section 3. These are presented in  
Table 2 for each portfolio and the S&P 500.

The study results show that the Bayes RBF 
method, using a Gaussian kernel in Kernel PCA, 
tuned with Bayesian optimization, is the most effi-
cient algorithm. The portfolio optimized with this 
method had the lowest drawdown of 28.5% during 
the period of February–April 2020, corresponding to 
the first outbreak of the COVID-19 pandemic, which 
is 5 percentage points lower than the drawdown level 
of the S&P 500. This observation confirms the find-
ings of study [8], demonstrating that algorithms with 
a Gaussian kernel perform better in market crisis sit-
uations. At the same time, the Gaussian kernel RBF 

and Bayes RBF algorithms show the highest volatil-
ity (27.7% and 28.5%, respectively). This result is due 
to the limited number of stocks considered, and thus, 
lower portfolio risk diversification.

Portfolios with the lowest volatility, apart from the 
S&P 500 index, were those with a polynomial kernel: 
Poly KPCA and Bayes Poly KPCA, with 22.5% and 
23.1% volatility, respectively. This indicates the poly-
nomial kernel’s capability to effectively filter noise. 
Additionally, these portfolios are characterized by the 
best 5% VaR values (around 2.1%), which are slightly 
higher than the value for the S&P 500. However, the 
average annual returns for these portfolios are among 
the lowest – 12.9% and 13.0%.

PCA and Bayes PCA portfolios, based on the prin-
cipal component method, showed average results in 
terms of risk and return. This indicates that even such 
classical algorithms with additional optimization out-
perform benchmarks on most metrics.

At the same time, the study results do not allow us to 
establish that Bayesian optimization or random search 
is more effective in hyperparameter selection.

Fig. 2. Returns on the test dataset for all 8 algorithms and the S&P 500.
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While the S&P 500 is characterized by the lowest risk, 
its return is also low, which is reflected in the ratio indi-
cators. Thus, the portfolios constructed, although more 
volatile than the S&P 500, show better results in other 
metrics, demonstrating that optimal portfolio rebalanc-
ing can provide additional return at the expense of risk.

To align our portfolios with the S&P 500’s risk level, 
i.e. the average annual volatility of the S&P index, 
we consider the results of the Bayes RBF algorithm if 
part of the money is invested in this algorithm and the 
remainder in a risk-free asset (average annual return 
results are presented in Table 3). Note that these results 
allow the use of the considered algorithm over a long 
period, achieving higher returns than the S&P while 
maintaining the same risk level.

Conclusion

The study explored a long-term investment algo-
rithm based on solving the Markowitz problem with 
an initial transition to a lower-dimensional space 
using various principal component analysis (PCA) 
variations. Periodic portfolio rebalancing allows for 
flexible responses to market changes, which is evi-
denced by drawdowns comparable to the benchmark 
in some models, despite higher risk indicators. How-
ever, portfolio rebalancing was not performed too fre-
quently to allow the Markowitz method to demon-
strate its effectiveness over sufficiently long intervals.

Moreover, optimizing the Martin coefficient during 
hyperparameter selection showed that the portfolios 

Table 2.
Economic indicators on the test set  

for all 8 algorithms and the S&P 500

S&P  
500

Without 
optimization PCA Poly 

KPCA rbf Bayes Bayes 
PCA

Bayes 
Poly 
KPCA

Bayes  
rbf

Profit factor 1.09 1.1 1.13 1.09 1.09 1.1 1.1 1.09 1.15

Sharpe ratio 0.41 0.57 0.65 0.46 0.63 0.58 0.53 0.45 0.85

Martin ratio 0.26 1.05 1.9 0.71 1.47 1.11 1.09 0.54 3.64

Annualized return 10.87% 18.75% 18.11% 12.9% 17.17% 18.71% 16.54% 13.01% 26.98%

Annualized volatility 20.26% 28.14% 23.97% 22.5% 27.71% 27.83% 26.08% 23.13% 28.51%

5% VaR 1.935% 2.815% 2.4% 2.113% 2.715% 2.817% 2.442% 2.151% 2.897%

Max drawdown 33.92% 44.41% 38.04% 43.51% 37.03% 42.99% 43.29% 34.1% 28.27%

Winning days 54.5% 54.2% 55.3% 53.6% 53.6% 54.1% 54.1% 53.4% 54.0%
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achieved high returns and relatively moderate draw-
downs.

Portfolios with trajectories more profitable than the 
benchmark, albeit slightly riskier, were also obtained. 
It is important to note that portfolio risk can be man-
aged through the risk aversion coefficient, allow-
ing investors to choose portfolios based on their risk 
preferences. Risk can also be regulated by the selected 
methods: a method with Kernel PCA and a polynomial 
kernel selects a less risky but also less profitable portfo-
lio, while a method without dimensionality reduction 

takes on more risk with the potential for higher returns. 
A balanced approach in this dilemma could be the sim-
ple PCA method, which maintains a balance between 
risk and return.

Notably, the algorithm using Kernel PCA with a 
Gaussian kernel exhibited the best economic indica-
tors, mainly due to its modest drawdown during the 
pandemic compared to other algorithms. It can be 
concluded that during crisis periods, the application of 
a Gaussian kernel to stock returns for transitioning to a 
lower-dimensional space is most effective. 

Table 3.
Comparison of the best algorithm and S&P 500

S&P  
500 

Bayes  
rbf

S&P-risk Bayes 
rbf

0% Bayes 
rbf

50% Bayes 
rbf

75% Bayes 
rbf

90% Bayes 
rbf

Annualized return 10.87% 26.98% 19.93% 2.61% 14.8% 20.89% 24.54%

Annualized volatility 20.26% 28.51% 20.26% 0.0% 14.26% 21.38% 25.66%

Sharpe ratio 0.41 0.85 0.85 0.0 0.85 0.85 0.85
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