SQOL QUERY OPTIMIZATION
FOR HIGHLY NORMALIZED BIG DATA

Nikolay 1. GOLOV

Lecturer, Department of Business Analytics, School of Business Informatics,
Faculty of Business and Management, National Research University Higher School of Economics

Address: 20, Myasnitskaya Street, Moscow, 101000, Russian Federation

E-mail: ngolov@hse.ru

Lars RONNBACK

Lecturer, Department of Computer Science, Stocholm University

Address: SE-106 91 Stockholm, Sweden
E-mail: lars.ronnback@anchormodeling.com

This paper describes an approach for fast ad-hoc analysis of Big Data inside a relational data model. The approach

strives to achieve maximal utilization of highly normalized temporary tables through the merge join algorithm. It is
designed for the Anchor modeling technique, which requires a very high level of table normalization. Anchor modeling
is a novel data warehouse modeling technique, designed for classical databases and adapted by the authors of the
article for Big Data environment and a massively parallel processing (MPP) database. Anchor modeling provides
[fexibility and high speed of data loading, where the presented approach adds support for fast ad-hoc analysis of Big
Data sets (tens of terabytes).

Different approaches to query plan optimization are described and estimated, for row-based and column-
based databases. Theoretical estimations and results of real data experiments carried out in a column-based MPP
environment (HP Vertica) are presented and compared. The results show that the approach is particularly favorable
when the available RAM resources are scarce, so that a switch is made from pure in-memory processing to spilling over
Jfrom hard disk, while executing ad-hoc queries. Scaling is also investigated by running the same analysis on different
numbers of nodes in the MPP cluster. Configurations of five, ten and twelve nodes were fested, using click stream data

of Avito, the biggest classified site in Russia.

Key words: Big Data, massively parallel processing (MPP), database, normalization, analytics, ad-hoc, querying,

modeling, performance.

Citation: Golov N.I., Ronnback L. (2015) SQL query optimization for highly normalized Big Data.

Business Informatics, no. 3 (33), pp. 7—14.

Introduction

ig Data analysis is one of the most popular IT
Btasks today. Banks, telecommunication compa-
nies, and big web companies, such as Google,
Facebook, and Twitter produce tremendous amounts
of data. Moreover, nowadays business users know how

to monetize such data [2]. Various artificial intelligence
marketing techniques can transform big customer be-

havior data into millions and billions of dollars. How-
ever, implementations and platforms fast enough to
execute various analytical queries over all available data
remain the main issue. Until now, Hadoop has been
considered the universal solution. But Hadoop has its
drawbacks, especially in speed and in its ability to proc-
ess difficult queries, such as analyzing and combining
heterogeneous data [6].

DECISION MAKING AND BUSINESS INTELLIGENCE

This paper introduces a new data processing ap-
proach, which can be implemented inside a relational
DBMS. The approach significantly increases the vol-
ume of data that can be analyzed within a given time
frame. It has been implemented for fast ad-hoc query
processing inside the column oriented DBMS Vertica
[7]. With Vertica, this approach allows data scientists to
perform fast ad-hoc queries, processing terabytes of raw
data in minutes, dozens of times faster than this data-
base can normally operate. Theoretically, it can increase
the performance of ad-hoc queries inside other types of
DBMS, too (experiments are planned within the frame-
work of further research).

The approach is based on the new database modeling
technique called Anchor modeling. Anchor modeling
was first implemented to support a very high speed of
loading new data into a data warchouse and to support
fast changes in the logical model of the domain area,
such as addition of new entities, new relationships be-
tween them, and new attributes of the entities. Later, it
turned out to be extremely convenient for fast ad-hoc
queries, processing high volumes of data, from hundreds
of gigabytes up to tens of terabytes.

The paper is structured as follows. Since not everyone
may be familiar with Anchor modeling, Section 1 ex-
plains its main principles, Section 2 discusses the aspects
of data distribution in an massively parallel processing
(MPP) environment, Section 3 defines the scope of
analytical queries, Section 4 introduces the main prin-
ciples of query optimization approach for analytical
queries. Section 5 discusses the business impact this ap-
proach has on Avito, and the paper is concluded in the
final section.

1. Anchor Modeling

Anchor modeling is a database modeling technique,
based on the usage of the 6" normal form (6NF) [9].
Modeling in 6NF yields the maximal level of table de-
composition, so that a table in 6NF has no non-trivial
join dependencies. That is why tables in 6NF usually
contain as few columns as possible. The following con-
structs are used in Anchor modeling:

1. Anchor, table of keys. Each logical entity of domain
area must have a corresponding Anchor table. This table
contains unique and immutable identifiers of objects of
a given entity (surrogate keys). Customer and Order are
two example anchors. An anchor table may also contain
technical columns, such as metadata.

2. Attribute, table of attribute values. This table stores
the values of a logical entities attributes that cannot be

described as entities of their own. The Name of a Cus-
tomer and the Sum of an Order are two example at-
tributes. An attribute table must contain at least two col-
umns, one for the entity key and one for the attribute
value. If an entity has three attributes, three separate at-
tribute tables have to be created.

3. Tie, table of entity relationships. For example,
which Customer placed a certain Order is typical for a
tie. Tie tables must contain at least two columns, one for
the first entity key (that of the Customer) and one for the
second (that of the related Order).

Sum Tie Name
I
= placed
Order Customer
Anchor ‘ Attribute ‘ Attribute ‘ Tie

OrdID [CustID| OrdID [Sum | CustID [Name | Ord ID | CustID
12 4 12 150 4 Dell 12 4
26 8 26 210 8 HP 26 8
35 35 98 35

Fig. 1. Anchor modeling sample data model

Ties and attributes can store historical values using
principles of slow changing dimensions type 2 (SCD 2)
[4]. Distinctive characteristic of Anchor modeling is that
historicity is provided by a single date-time field (so-
called FROM DATE), not a two fields (FROM DATE —
TO DATE), as for Data Vault modeling methodology. If
historicity is provided by a single field (FROM DATE),
then second border of interval (TO DATE) can be es-
timated as FROM DATE of next sequential value, or
NULL, if the next value is absent.

2. Data
distribution

Massive parallel processing databases generally have
shared-nothing scale-out architectures, so that each
node holds some subset of the database and enjoy a
high degree of autonomy with respect to executing
parallelized parts of queries. For each workload posed
to a cluster, the most efficient utilization occurs when
the workload can be split equally among the nodes and

8

BUSINESS INFORMATICS Ne3(33)-2015

each node can perform as much of its assigned work
as possible without the involvement of other nodes. In
short, data transfer between nodes should be kept to
a minimum. Given arbitrarily modeled data, achiev-
ing maximum efficiency for every query is unfeasible
due to the amount of duplication that would be need-
ed on the nodes, while also defeating the purpose of
a cluster. However, with Anchor modeling, a balance
is found where most data is distributed and the right
amount of data is duplicated in order to achieve high
performance for most queries. The following three dis-
tribution schemes are commonly present in MPP data-
bases and they suitably coincide with Anchor modeling
constructs.

Broadcast the data to all nodes. Broadcasted data is
available locally, duplicated, on every node in the clus-
ter. Knots are broadcasted, since they normally take
up little space and may be joined from both attributes
and ties. In order to assemble an instance with knotted
attributes or relationships represented through knot-
ted ties without involving other nodes, the knot val-
ues must be available locally. Thanks to the uniqueness
constraint on knot values, query conditions involving
them can be resolved very quickly and locally, to reduce
the row count of intermediate result sets in the execu-
tion of the query.

Segment the data according to some operation that
splits it across the nodes. For example, a modulo op-
eration on a hash of the surrogate identifier column
in the anchor and the attribute tables could be used to
determine on which node data should end up. Using
the same operation on anchors and attributes keeps
an instance of an ensemble and its history of changes
together on the same node. Assembling an instance
in part or in its entirety can therefore be done with-
out the involvement of other nodes. Since anchors and
attributes retain the same sort order for the surrogate
identifier, no sort operations are needed when they are
joined.

Project the data with a specified sort order and speci-
fied segmentation. If table has multiple columns, if it is
segmented by one column, and is joined by another col-
umn, than this join operation will require redistribution
of data across all nodes. MPP databases support such
joins with an ability to create projection — full copy of a
table, segmented and sorted by another column. There
can be multiple projections of a single table, according
to business needs. Ties have one projection for each role
in the tie, where each segmentation is done over and or-
dered by the surrogate identifier representing the cor-
responding role. This ensures that all relationships that

an instance takes part in can be resolved without the in-
volvement of other nodes, and that joining a tie will not
require any sort operations. Therefore, tie will require
no more than one additional projection.

Usage of single date-time field for historicity (SCD2)
gives significant benefit — it does not require updates.
New values can be added exclusively by inserts. This fea-
ture is very important for column-based databases, that
are designed for fast select and insert operations, but are
extremely slow for delete and update operations. Single
date-time field historicity also requires efficient analyti-
cal queries to estimate closing date for each value. Dis-
tribution strategy, described above, guarantees, that all
values for single anchor are stored on a single node and
properly sorted, so closing date estimation can be ex-
tremely efficient.

3. Analytical
queries

Databases can be utilized to perform two types of
tasks: OLTP tasks or OLAP tasks. OLTP means online
transaction processing: huge number of small insert,
update, delete, select operations, where each operation
processes small chunk of data. OLTP tasks are typical for
operational databases. OLAP means online analytical
processing: relatively small number of complex analyti-
cal select queries, where each query processes significant
part of data (or whole data). Given article is focused on
OLAP queries to Big Data.

Analytical queries may include three types of subtasks:

1. Combine dataset according to query. Big Data is
stored as tables, which have to be combined (joined) ac-
cording to given conditions.

2. Filter dataset according to query. Query can contain
conditions on the data: single column conditions, col-
umn comparisons and sampling conditions (for exam-
ple «top 10 percent of user accounts according to total
number of payments of each user account»).

3. Calculate aggregates over filtered datasets.

4. Efficient plans
for analytical queries

SQL can describe almost all types of analytical que-
ries. It is one of the main advantages of SQL and rela-
tional databases: if analytical query can be formulated
using SQL, than relational database can process it and
return correct result. Main problem lies in the optimiza-
tion of the query execution time.

9

In this paper, queries are analyzed from a Big Data
analyst’s point of view. Analysts want to get their answers
as fast as possible. Query with suboptimal execution plan
can be processed tens of times slower than optimal one.
If query processes Big Data, inefficient plan can work
hours and days, while efficient one can return result in
minutes.

This section contains main principles of optimiza-
tion analytical queries to Big Data in MPP environ-
ment, obtained by Avito. Growth of Avito data ware-
house enabled its analysts to study various approaches
to query optimization and chose most efficient ones,
able to speed queries to Big Data in an MPP environ-
ment from hours to minutes. These researches were
launched at the initial phase of DWH development, be-
cause there were concerns about speed of OLAP que-
ries to a Anchor Model. On the further phases, those
results were applied to analysis of both, normalized
data (Anchor modeling) and denormalized data (data
marts) with equal effectiveness.

Here is a list of main risks of query execution plan in a
MPP environment:

4 Join spill. According to Section 3, analytical tasks
can require joins. Joins can be performed via Hash Join,
Nested Loop Join and Sort-Merge join algorithms.
Nested loop join is inefficient for OLAP queries (it’s best
for OLTP) [3]. Sort phase of sort-merge algorithm join
can be inefficient for MPP environment, so if source
date is not sorted, query optimizer prefers hash join al-
gorithm. Hash join is based on storing left part of the
join in RAM. If RAM is not enough, query will face a
join spill. Join spill (term can differ in various DBMS-s)
mean that some part of query execution plan requires
too much RAM, and source data have to be separated
into N chunks (small enough to fit into available RAM)
to be processed consequently and at the end - to be com-
bined together. Join spill reduces maximum RAM utili-
zation, but increases disk I/O, a slower resource. Fol-
lowing diagram illustrates, why a condition reducing a
table on one side of the join may not reduce the number
of disk operations for the table on the other side of the
join. Therefore, disk I/O operations can be estimated
according to optimistic (concentrated keys) or pessimis-
tic (spread out keys) scenarios. In the optimistic one,
the number of operations is the same as in a RAM join,
whereas in the pessimistic one the whole table may need
to be scanned for each chunk, so disk I/O can increase
N times. According to modern servers(>100Gb of RAM for
a node), this risk is actual when left part of the join contains
over one billion of rows. Hash join for tables of millions
of rows is safe.

10

Case 2
Fig. 2. Three cases of inner join

Figure above demonstrates three cases of inner join.
First case: smaller table contain two disk pages of keys,
correspondent keys in bigger table occupy three disk
pages. Second case: smaller table reduced twice, to one
disk page, correspondent keys in bigger table are con-
centrated, so to read them one need to scan only two
disk pages instead of three. Third case: smaller table re-
duced twice, but correspondent keys are not concentrat-
ed but distributed (see gaps), so one need to read same
number of disk pages, as before (three).

4 Group by spill. Group by phase of the query can
also be executed by Hash Group algorithm, and it also
can be spilled on disk, as a join phase. This risk is actual
if there are more than hundreds of millions of groups in a
group by phase.

4 Resegmentation/broadcast. If two tables are joined
together, and they are joined and segmented over nodes
of MPP cluster using different keys, than joining may be
performed either by resegmentation of one table across
all nodes, or by broadcasting all data of one table across
all nodes (see Section 2). This risk is actual if tables in
question contains billions of rows.

4+ Wrong materialization. Materialization strategy is
extremely important for column-based databases [8].
Materialization strategy defines process of combin-
ing column data together (in a column based databases
they are stored separately). It is extremely important for
join queries. There can be early materialization (read
columns, combine columns, than apply filter), or late
materialization (read filtered column, apply filter, read
other columns according to filtered rows, combine). Ac-
cording to [1], it is more efficient to select late materiali-
zation strategy. But if a query is complex, query optimiz-
er can make a mistake. If query requires join of tables A,
B and C, and has a filtering condition to tables A and B,
late materialization may lead to loading of filtered values
from A, B in parallel, all values from C, and join them
together. This strategy is efficient if condition on table A
and B reduce data a lot, while join with tables B and C
don’t reduce data. Otherwise, if each condition takes %
of A and B, and conditions are uncorrelated, than join-

ing filtered tables A and B will result in 1/16 part of data,
so early materialization can significantly reduce disk
1/0 of tables B and C.

Risks, listed above, can be avoided by using modified
query execution plans, based on following principles:

<> Maximum merge join utilization. Sort-Merge join
algorithm is a most effective for non-selective analyti-
cal queries among such algorithms as Hash Join, Nested
Loop Join and Sort-Merge join, especially if analyzed
data are already sorted on join key, so only merge join
operation is required, without sort operations [3].

<> Single time disk page access. Query plan with a
join spill has awful characteristics in terms of pessi-
mistic number of disk page access operations because
many disk pages are accessed multiple times during
plan execution. To create plan with optimal charac-
teristics each required disk page must be accessed no
more than once.

<> Massive temporary table utilization. Two princi-
ples, mentioned above, cannot be guaranteed for all
ad-hoc queries to real-world Big Data databases, cre-
ated according to 1/2/3 normal form. Table of dozen
columns cannot be sorted on each column (without
duplicating this table dozen times). Also it cannot be
guaranteed that all keys in joined tables are concen-
trated, to equalize pessimistic and optimistic disk page
operation count (see fig. 2). But this principles can be
guaranteed in a Anchor Modeling data model, if each
data subset, retrieved after each step of filtering, is
stored as a temporary table. Temporary tables can be
sorted on specific column, to optimize further merge
join. Also those temporary tables contain concentrated
keys, only keys, required for given ad-hoc query. This
feature helps to avoid double disk page access. Con-
cerning speed of creating temporary table for large data
set: modern HDDs provide equal speed for sequential
read and sequential write. Important. Given algorithms
don’t require creation of indexes of any kind. Only
storing sorted rows as a temporary table, so this opera-
tion can be as fast, as saving a data file on HDD. Sort-
ing is enough for efficient Merge Join.

Efficient plans for analytical queries, utilizing princi-
ples, listed above, can be created using following algo-
rithm:

0. Assume that query is based on joining tables
T,..T,, filtered according to complex conditions
C,..Cy,...C",...Cy, there C} is a condition on table j,
which can be estimated only when i tables are already
loaded. So, Cj. is single table filtering condition. C; isa
combination of all conditions on table ;.

1. Estimate data reduction rate for each table
R(C)(T)))
R(T})

>

where R(7;,) means number of rows. Chose the tables
with best reduction rate to be the first one (assume that
itis table 7).

2. Take k, tables, identically segmented with table 7.
Assume that those tables are 7;,...7,. Join all k, tables,
using all applicable filtering conditions, using merge join
algorithm, consequently, starting from table 7'. So table
T, has to be scanned and filtered first, than only cor-
responding rows from 7, has to be scanned and filtered
according to conditions C, and C?, than the same for ta-
bles7;,...T,.

3. Estimate data reduction rate for remaining tables

R(C/le (71/))
R(T))
using data tables, joined and filtered on step 2. Chose
the tables with best reduction rate to be the next one (as-

sume that it is table 7).

4. Save results of joining and filtering tables from step
2 inside a temporary table T,W, identically segmented
with table 7,

k1+1°

5. Replace tables 7},...7, of initial list with a table T".
6. Return to step 2 with reduced list of tables.

7. It list of tables contain single table, perform final ag-
gregations, save results.

Given algorithm has important drawbacks:

1. It requires a lot of statistics about source tables,
about data reduction rate of conditions, for step 1. In
some cases first estimation of statistics can require more
efforts, than analytical query itself.

2. Statistics estimation, as well as creation of tempo-
rary tables with dedicated segmentation, has to be im-
plemented manually, because current version of query
optimizers and query processing engines can not do it.
Avito used Python implementation.

Drawback 1 can be avoided using estimates from pre-
viously calculated queries, continuously. First process-
ing of brand new query can be time-consuming.

Drawback 2 can be avoided for identically segmented
tables, because algorithm ends on step 2. That is why
Anchor Modeling data model for MPP environment is
especially favorable for approach. Step 2 does not re-
quire implementation of additional logic, it can be per-
formed using SQL, database query execution engine and
some hints.

11

5. Business
applications

The approach described in Section 4 has been im-
plemented for ad-hoc querying in a Big Data (data
warehouse) solution at Avito. Based in Moscow, Avito
is Russias fastest growing e-commerce site and portal,
«Russia’s Craiglist». The Avito data warehouse is imple-
mented according to the Anchor modeling methodolo-
gy. It contains ~ 200 Anchors, ~ 600 Attributes, and ~ 300
Ties. Using this model it loads, maintains, and presents
many types of data. The greatest volume can be found
in the part loaded from the click stream data sources.
Click stream data are loaded every 15 minutes, with each
15-minute batch containing 5 mlin. rows at the begin-
ning of 2014 and 15 mln. at the beginning of 2015.

Each loaded row contained approximately 30 columns
at the beginning of 2014 and approximately 70 columns
at the beginning of 2015. Each column is a source for a
separate Anchor, Attribute or Tie table. The current size
of the Avito data warehouse has been limited to 51Tb
for licensing reasons. It contains years of consistent his-
torical data from various sources (back office, Google
DFP/AdSense, MDM, accounting software, various ag-
gregates), and a rolling half year of detailed data from
click stream.

The presented approach for ad-hoc queries was suc-
cessfully implemented by the Avito BI team in less than
a year. It provides analysts at Avito with a tool for fast
(5-10-2060 minutes) analysis of near-real time Big
Data, according to various types of tasks, such as direct
marketing, pricing, CTR prediction, illicit content de-
tection, and customer segmentation.

Conclusions

A high degree of normalization has the advantage of
flexibility. The resulting data models can be extended
easily and in a lossless manner. Anchor modeling also

enables parallel loading of all entities, their attributes,
and links with or without historization of each link and
attribute. The supposed drawback of a highly normal-
ized data model is slow ad-hoc reporting, which is why
Inmon [4] recommends combining normalized mod-
els for centralized repositories with denormalized data
marts. The paper, however, demonstrates that while
Anchor modeling may require some sort of denormal-
ization for single-entity analysis, it can yield very high
performance for queries that involve multiple linked en-
tities, and particularly so when there is a risk of join spill
(lack of RAM).

The experiments carried out showed benefits of the
given approach for the simplified case of two linked en-
tities. Realworld business cases sometimes require three,
four or even a dozen linked entities in the same ad-hoc
query. Such cases multiply the risk of join spill occurring
in some step, and amplify its negative effect. If number
of joins, tables and filtering conditions increases, que-
ry RAM requirements estimation accuracy decreases.
Query optimizer can significantly overestimate RAM
requirements and cause an unnecessary join spill with all
associated drawbacks. The approach from Section 4 has
been in use at Avito for over a year, for ad-hoc and reg-
ular reporting, and even for some near-real time KPIs.
It has demonstrated stability in terms of execution time
and resource consumption, while ordinary queries often
degraded after months of usage because of data growth.

One can wonder if the approach from Section 4 can be
applied for implementations based on other techniques
than Anchor modeling. The answer is yes, it can be ap-
plied, but with additional work. The strictly determined
structure of Anchor modeling enables Avito to have
a fully automated and metadata-driven implementa-
tion of the given approach. To conclude, the approach,
while not being uniquely tied to Anchor modeling, suits
such implementations very well and compensates for the
commonly believed drawback of normalization in the
perspective of ad-hoc querying. B

References

1. Abadi D.J., Myers D.S., DeWitt D.J., Madden S.R. (2007) Materialization strategies in a Column-Oriented
DBMS. Proceedings of the 23rd IEEE International Conference on Data Engineering (ICDE 2007), April 15-20,

2007, Istanbul, Turkey, pp. 466—475.

2. Chen M., Mao S., Liu Y. (2014) Big Data: A survey. Mobile Networks and Applications, no. 19, pp. 171—209.

3. Graefe G. (1999) The value of merge-join and hash-join in SQL Server. Proceedings of the 25th International
Conference on Very Large Data Bases (VLDB 1999), September 7-10, 1999, Edinburgh, Scotland, pp. 250—253.

4. Inmon W.H. (1992) Building the Data Warehouse, Wellesley, MA: QED Information Sciences.

5. Kalavri V., Vlassov V. (2013) MapReduce: Limitations, optimizations and open issues. Proceedings of the 12th
IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom
2013), July 16-18, 2013, Melbourne, Australia, pp. 1031—1038.

12

DECISION MAKING AND BUSINESS INTELLIGENCE

6. Knuth D. (1998) The art of computer programming. Volume 3: Sorting and searching. 2nd edition, Boston, MA:
Addison—Wesley.

7. Lamb A., Fuller M., Varadarajan R., Tran N., Vandiver B., Doshi L., Bear C. (2012) The Vertica analytic data-
base: C-store 7 years later. Proceedings of the VL. DB Endowment, vol. 5, no. 12, pp. 1790—1801.

8. Shrinivas L., Bodagala S., Varadarajan R., Cary A., Bharathan V., Bear C. (2013) Materialization strategies in
the Vertica analytic database: Lessons learned. Proceedings of the 29th IEEE International Conference on Data
Engineering (ICDE 2013), April 8-11, 2013, Brisbane, Australia, pp. 1196—1207.

9. Ronnback L., Regardt O., Bergholtz M., Johannesson P., Wohed P. (2010) Editorial: Anchor Modeling —
agile information modeling in evolving data environments, Data and Knowledge Engineering, vol. 69, no. 12,
pp. 1229—1253.

ONTUMM3ALIUA SQL-3ANPOCOB
ANA BbICOKOHOPMAJIU30BAHHbLIX bOJIbLUUX QAHHbIX

HMU 1OJIOB

npenodasamens Kaghedpvl OU3HeC-aHANUMUKU,

wKona busHec-uHgopmamuku, paxkysvmem OuzHeca u MeHeoICMeHma,
Hauuonanvhuiii uccaedosamenvckuii ynusepcumem «Bvicuias wikoaa 3K OHOMUKU»
Adpec: 101000, e. Mockea, ya. Macruukas, 0. 20

E-mail: ngolov@hse.ru

J. POHBAK
npenodagamens axyibmema KOMnbIOMepHbIX HayK, Yruueepcumem Cmokeonvma

Adpec: SE-106 91 Stockholm, Sweden
E-mail: lars.ronnback @anchormodeling.com

B oannoii cmamve onucwigéaemcst no0xo0 045 ObICMPOCO AHAAU3A OOABUIUX OAHHBIX 6 PEASUUOHHOU MOOenu
dannvix. Lleavio danHoeo nooxoda aeasiemcs docmudiceHue MAKCUMAAbHO20 UCHOAb308AHUS 8bICOKOHOPMANU3AHHBIX
BpeMeHHbIX Mabaul, 00pe0UHseMbIX NOCPEOCMBEOM AN0pUMMA coeOuHenus causHuem (merge join algorithm). Ilooxoo
obL1 pazpaboman ons memodonoeuu Anchor Modeling, npednoaaearouieii KpatiHe 8bICOKUI YPOBEHb HOPMANUZAUUU
mabauy. Anchor Modeling — smo Hoeeliuias Memodoa02usi ROCMPOeHUst XPAHUAUW, OAHHBIX, pa3pabomanHas 04s
Kaaccuueckux 0a3 OAHHLIX U a0anmMupoeanHas oa 3ada4 boavuiux oanuvix u MPP (maccusHo-napanienvruix)
6a3 daunvix aemopamu cmamou. Anchor Modeling obecneuuseaem eubkocms pacuiupenus U 8biCOKYH CKOPOCHb
3a2py3KU OaHHbIX, 8 MO 8peMsl KaK npedcmaeseHHblil N00X00 K ONMUMU3AUULU 3aNpoco8 OONOAHSEem Memo0oA02UI0
B03MOINCHOCHIBIO <HA AeMY» NPOBOOUMb ObicMPbLil AHAAU3 O0AbULX 8bI00POK danHbiX (Oecsimiu T0).

B cmamve onucanbl u oyeHeHbl paziuuHbie NOOX00bl K ONMUMU3AUUU NAAHO8 GbINOAHEHUs 3aNpocos Ois
KONOHOUHbIX U 00bIYHbIX (CmMpouHblX) 0a3 OauHbix. [IpedcmasneHbl u conocmaesaeHsl pe3yavmamol Mmeopemu4ecKux
OUEHOK U NpaKmu4ecKux IKCNepUMeHmoa8 Ha PeanbHbiX OGHHbIX, NP0BEOEHHbIX HA NAAMGOPME KOAOHOUHOUMACCUBHO-
napanneavroi (MPP) 6azvt dannwix HP Vertica. Pezyavmambt cpasHenusi 0eMOHCIMPUPYrOm, 4o nooxo0 0cOOeHHO
appekmugen 045 cayHaed HexX6amKu OOCMYRHOU OREPAMUBHOU NAMSAMU, @ Pe3yAbmame Yeeo ONMUMUIAMOPY
3anpocoé 6asbl OGHHLIX NpU 00pabomKe AHAAUMUYECKUX 3aNpoco8 NPUxooumcs nepexooums om Haubdonee
ONMUMANBHORO PeXcUMa 00padomKu 8 onepamueHoll namsamu (in-memory) K pexcumy nooOKauku ¢ JHcecmioeo
ducka. Takxce usyuen onpoc macuimaduposanus Haepysku. s 3moeo 00uH U mom Jce aHAAU3 NPOU3BOOUNCS
Ha Kkaacmepax maccusno-napaiseavioii CYBJl Bepmuka, cocmoswux u3 pazroeo Koausecmea cepgepos. bouiu
UCNbIMAHbL KOHGUYpayuu u3 namu, decsimu u 0éeHaduyamu cepeepos. s anaiu3a npumMeHsnucs OaHHble muna
«NOMOK KAUKOB» — 00e3nuueHHble JaHHble 0 KAUKAX noav3oeameneil Asumo, KpynHeliueeo poccuiickoeo caiima
00s56/1€HULL.

BUSINESS INFORMATIGS Ne3(33)-2015 13

[IPUHATUE PELLIEHVMNA W BUSHEC-MHTE/IIEKT

KimoueBsie cioBa: 6oJ1bl11e TaHHBIE, MACCUBHO-TTIapajuieibHast 00paboTtka (MPP), 6a3a manHBIX, HOpMaIU3aIus,
aHaJIMTUKA, aHAIUTHUKA «Ha JIETY», 3alIPOChI, MOJEJIMPOBAHUE, TPOU3BOAUTENBHOCTb.

IMuruposanme: Golov N.1., Ronnback L. SQL query optimization for highly normalized Big Data // Business Informatics.
2015. No. 3 (33). P. 7—-14.

14

Jlureparypa

Abadi D.J., Myers D.S., DeWitt D.J., Madden S.R. Materialization strategies in a Column-Oriented DBMS // Proceedings of the 23rd
IEEE International Conference on Data Engineering (ICDE 2007), April 15-20, 2007, Istanbul, Turkey. IEEE, 2007. P. 466—475.

Chen M., Mao S., Liu Y. Big Data: A survey // Mobile Networks and Applications. 2014. No. 19. P. 171-209.

Graefe G. The value of merge-join and hash-join in SQL Server // Proceedings of the 25th International Conference on Very Large Data
Bases (VLDB 1999), September 7-10, 1999, Edinburgh, Scotland. 1999. P. 250—253.

Inmon W.H. Building the Data Warehouse. Wellesley, MA: QED Information Sciences, 1992. 272 p.

Kalavri V., Vlassov V. MapReduce: Limitations, optimizations and open issues // Proceedings of the 12th IEEE International Conference
on Trust, Security and Privacy in Computing and Communications (TrustCom 2013), July 16-18, 2013, Melbourne, Australia. IEEE, 2013.
P. 1031-1038.

Knuth D. The art of computer programming. Volume 3: Sorting and searching. 2nd edition. Boston, MA: Addison—Wesley, 1998. 782 p.
The Vertica analytic database: C-store 7 years later / A. Lamb [et al] // Proceedings of the VLDB Endowment. 2012. Vol. 5, No. 12. P.
1790—1801.

Shrinivas L., Bodagala S., Varadarajan R., Cary A., Bharathan V., Bear C. Materialization strategies in the Vertica analytic database: Lessons
learned // Proceedings of the 29th IEEE International Conference on Data Engineering (ICDE 2013), April 8-11, 2013, Brisbane, Australia.
IEEE, 2013. P. 1196—1207.

Editorial: Anchor Modeling — agile information modeling in evolving data environments / L. Ronnback [et al] // Data and Knowledge
Engineering. 2010. Vol. 69, No. 12. P. 1229—1253.

bUSHEG-HHDOPMATHUKA Ne3(33)-2015 r.

