
7BUSINESS INFORMATICS №3(33)–2015

SQL QUERY OPTIMIZATION
FOR HIGHLY NORMALIZED BIG DATA

Nikolay I. GOLOV
Lecturer, Department of Business Analytics, School of Business Informatics,
Faculty of Business and Management, National Research University Higher School of Economics

Address: 20, Myasnitskaya Street, Moscow, 101000, Russian Federation
E-mail: ngolov@hse.ru

Lars RONNBACK
Lecturer, Department of Computer Science, Stocholm University

Address: SE-106 91 Stockholm, Sweden
E-mail: lars.ronnback@anchormodeling.com

This paper describes an approach for fast ad-hoc analysis of Big Data inside a relational data model. The approach

strives to achieve maximal utilization of highly normalized temporary tables through the merge join algorithm. It is

designed for the Anchor modeling technique, which requires a very high level of table normalization. Anchor modeling

is a novel data warehouse modeling technique, designed for classical databases and adapted by the authors of the

article for Big Data environment and a massively parallel processing (MPP) database. Anchor modeling provides

flexibility and high speed of data loading, where the presented approach adds support for fast ad-hoc analysis of Big

Data sets (tens of terabytes).

Different approaches to query plan optimization are described and estimated, for row-based and column-

based databases. Theoretical estimations and results of real data experiments carried out in a column-based MPP

environment (HP Vertica) are presented and compared. The results show that the approach is particularly favorable

when the available RAM resources are scarce, so that a switch is made from pure in-memory processing to spilling over

from hard disk, while executing ad-hoc queries. Scaling is also investigated by running the same analysis on different

numbers of nodes in the MPP cluster. Configurations of five, ten and twelve nodes were tested, using click stream data

of Avito, the biggest classified site in Russia.

Key words: Big Data, massively parallel processing (MPP), database, normalization, analytics, ad-hoc, querying,

modeling, performance.

Citation: Golov N.I., Ronnback L. (2015) SQL query optimization for highly normalized Big Data.

Business Informatics, no. 3 (33), pp. 7–14.

Introduction

B
ig Data analysis is one of the most popular IT

tasks today. Banks, telecommunication compa-

nies, and big web companies, such as Google,

Facebook, and Twitter produce tremendous amounts

of data. Moreover, nowadays business users know how

to monetize such data [2]. Various artificial intelligence

marketing techniques can transform big customer be-

havior data into millions and billions of dollars. How-

ever, implementations and platforms fast enough to

execute various analytical queries over all available data

remain the main issue. Until now, Hadoop has been

considered the universal solution. But Hadoop has its

drawbacks, especially in speed and in its ability to proc-

ess difficult queries, such as analyzing and combining

heterogeneous data [6].

DECISION MAKING AND BUSINESS INTELLIGENCE

8 BUSINESS INFORMATICS №3(33)–2015

This paper introduces a new data processing ap-

proach, which can be implemented inside a relational

DBMS. The approach significantly increases the vol-

ume of data that can be analyzed within a given time

frame. It has been implemented for fast ad-hoc query

processing inside the column oriented DBMS Vertica

[7]. With Vertica, this approach allows data scientists to

perform fast ad-hoc queries, processing terabytes of raw

data in minutes, dozens of times faster than this data-

base can normally operate. Theoretically, it can increase

the performance of ad-hoc queries inside other types of

DBMS, too (experiments are planned within the frame-

work of further research).

The approach is based on the new database modeling

technique called Anchor modeling. Anchor modeling

was first implemented to support a very high speed of

loading new data into a data warehouse and to support

fast changes in the logical model of the domain area,

such as addition of new entities, new relationships be-

tween them, and new attributes of the entities. Later, it

turned out to be extremely convenient for fast ad-hoc

queries, processing high volumes of data, from hundreds

of gigabytes up to tens of terabytes.

The paper is structured as follows. Since not everyone

may be familiar with Anchor modeling, Section 1 ex-

plains its main principles, Section 2 discusses the aspects

of data distribution in an massively parallel processing

(MPP) environment, Section 3 defines the scope of

analytical queries, Section 4 introduces the main prin-

ciples of query optimization approach for analytical

queries. Section 5 discusses the business impact this ap-

proach has on Avito, and the paper is concluded in the

final section.

1. Anchor Modeling

Anchor modeling is a database modeling technique,

based on the usage of the normal form (6NF) [9].

Modeling in 6NF yields the maximal level of table de-

composition, so that a table in 6NF has no non-trivial

join dependencies. That is why tables in 6NF usually

contain as few columns as possible. The following con-

structs are used in Anchor modeling:

1. Anchor, table of keys. Each logical entity of domain

area must have a corresponding Anchor table. This table

contains unique and immutable identifiers of objects of

a given entity (surrogate keys). Customer and Order are

two example anchors. An anchor table may also contain

technical columns, such as metadata.

2. Attribute, table of attribute values. This table stores

the values of a logical entities attributes that cannot be

described as entities of their own. The Name of a Cus-

tomer and the Sum of an Order are two example at-

tributes. An attribute table must contain at least two col-

umns, one for the entity key and one for the attribute

value. If an entity has three attributes, three separate at-

tribute tables have to be created.

3. Tie, table of entity relationships. For example,

which Customer placed a certain Order is typical for a

tie. Tie tables must contain at least two columns, one for

the first entity key (that of the Customer) and one for the

second (that of the related Order).

Fig. 1. Anchor modeling sample data model

Ties and attributes can store historical values using

principles of slow changing dimensions type 2 (SCD 2)

[4]. Distinctive characteristic of Anchor modeling is that

historicity is provided by a single date-time field (so-

called FROM DATE), not a two fields (FROM DATE –

TO DATE), as for Data Vault modeling methodology. If

historicity is provided by a single field (FROM DATE),

then second border of interval (TO DATE) can be es-

timated as FROM DATE of next sequential value, or

NULL, if the next value is absent.

2. Data

distribution

Massive parallel processing databases generally have

shared-nothing scale-out architectures, so that each

node holds some subset of the database and enjoy a

high degree of autonomy with respect to executing

parallelized parts of queries. For each workload posed

to a cluster, the most efficient utilization occurs when

the workload can be split equally among the nodes and

Anchor Attribute Attribute Tie

Ord ID Cust ID Ord ID Sum Cust ID Name Ord ID Cust ID

12 4 12 150 4 Dell 12 4

26 8 26 210 8 HP 26 8

35 35 98 35

Sum

Order

Name

placed

by

Tie

Customer

DECISION MAKING AND BUSINESS INTELLIGENCE

9BUSINESS INFORMATICS №3(33)–2015

an instance takes part in can be resolved without the in-

volvement of other nodes, and that joining a tie will not

require any sort operations. Therefore, tie will require

no more than one additional projection.

Usage of single date-time field for historicity (SCD2)

gives significant benefit – it does not require updates.

New values can be added exclusively by inserts. This fea-

ture is very important for column-based databases, that

are designed for fast select and insert operations, but are

extremely slow for delete and update operations. Single

date-time field historicity also requires efficient analyti-

cal queries to estimate closing date for each value. Dis-

tribution strategy, described above, guarantees, that all

values for single anchor are stored on a single node and

properly sorted, so closing date estimation can be ex-

tremely efficient.

3. Analytical

queries

Databases can be utilized to perform two types of

tasks: OLTP tasks or OLAP tasks. OLTP means online

transaction processing: huge number of small insert,

update, delete, select operations, where each operation

processes small chunk of data. OLTP tasks are typical for

operational databases. OLAP means online analytical

processing: relatively small number of complex analyti-

cal select queries, where each query processes significant

part of data (or whole data). Given article is focused on

OLAP queries to Big Data.

Analytical queries may include three types of subtasks:

1. Combine dataset according to query. Big Data is

stored as tables, which have to be combined (joined) ac-

cording to given conditions.

2. Filter dataset according to query. Query can contain

conditions on the data: single column conditions, col-

umn comparisons and sampling conditions (for exam-

ple «top 10 percent of user accounts according to total

number of payments of each user account»).

3. Calculate aggregates over filtered datasets.

4. Efficient plans

for analytical queries

SQL can describe almost all types of analytical que-

ries. It is one of the main advantages of SQL and rela-

tional databases: if analytical query can be formulated

using SQL, than relational database can process it and

return correct result. Main problem lies in the optimiza-

tion of the query execution time.

each node can perform as much of its assigned work

as possible without the involvement of other nodes. In

short, data transfer between nodes should be kept to

a minimum. Given arbitrarily modeled data, achiev-

ing maximum efficiency for every query is unfeasible

due to the amount of duplication that would be need-

ed on the nodes, while also defeating the purpose of

a cluster. However, with Anchor modeling, a balance

is found where most data is distributed and the right

amount of data is duplicated in order to achieve high

performance for most queries. The following three dis-

tribution schemes are commonly present in MPP data-

bases and they suitably coincide with Anchor modeling

constructs.

Broadcast the data to all nodes. Broadcasted data is

available locally, duplicated, on every node in the clus-

ter. Knots are broadcasted, since they normally take

up little space and may be joined from both attributes

and ties. In order to assemble an instance with knotted

attributes or relationships represented through knot-

ted ties without involving other nodes, the knot val-

ues must be available locally. Thanks to the uniqueness

constraint on knot values, query conditions involving

them can be resolved very quickly and locally, to reduce

the row count of intermediate result sets in the execu-

tion of the query.

Segment the data according to some operation that

splits it across the nodes. For example, a modulo op-

eration on a hash of the surrogate identifier column

in the anchor and the attribute tables could be used to

determine on which node data should end up. Using

the same operation on anchors and attributes keeps

an instance of an ensemble and its history of changes

together on the same node. Assembling an instance

in part or in its entirety can therefore be done with-

out the involvement of other nodes. Since anchors and

attributes retain the same sort order for the surrogate

identifier, no sort operations are needed when they are

joined.

Project the data with a specified sort order and speci-

fied segmentation. If table has multiple columns, if it is

segmented by one column, and is joined by another col-

umn, than this join operation will require redistribution

of data across all nodes. MPP databases support such

joins with an ability to create projection – full copy of a

table, segmented and sorted by another column. There

can be multiple projections of a single table, according

to business needs. Ties have one projection for each role

in the tie, where each segmentation is done over and or-

dered by the surrogate identifier representing the cor-

responding role. This ensures that all relationships that

DECISION MAKING AND BUSINESS INTELLIGENCE

10 BUSINESS INFORMATICS №3(33)–2015

In this paper, queries are analyzed from a Big Data

analyst’s point of view. Analysts want to get their answers

as fast as possible. Query with suboptimal execution plan

can be processed tens of times slower than optimal one.

If query processes Big Data, inefficient plan can work

hours and days, while efficient one can return result in

minutes.

This section contains main principles of optimiza-

tion analytical queries to Big Data in MPP environ-

ment, obtained by Avito. Growth of Avito data ware-

house enabled its analysts to study various approaches

to query optimization and chose most efficient ones,

able to speed queries to Big Data in an MPP environ-

ment from hours to minutes. These researches were

launched at the initial phase of DWH development, be-

cause there were concerns about speed of OLAP que-

ries to a Anchor Model. On the further phases, those

results were applied to analysis of both, normalized

data (Anchor modeling) and denormalized data (data

marts) with equal effectiveness.

Here is a list of main risks of query execution plan in a

MPP environment:

 Join spill. According to Section 3, analytical tasks

can require joins. Joins can be performed via Hash Join,

Nested Loop Join and Sort-Merge join algorithms.

Nested loop join is inefficient for OLAP queries (it’s best

for OLTP) [3]. Sort phase of sort-merge algorithm join

can be inefficient for MPP environment, so if source

date is not sorted, query optimizer prefers hash join al-

gorithm. Hash join is based on storing left part of the

join in RAM. If RAM is not enough, query will face a

join spill. Join spill (term can differ in various DBMS-s)

mean that some part of query execution plan requires

too much RAM, and source data have to be separated

into N chunks (small enough to fit into available RAM)

to be processed consequently and at the end - to be com-

bined together. Join spill reduces maximum RAM utili-

zation, but increases disk I/O, a slower resource. Fol-

lowing diagram illustrates, why a condition reducing a

table on one side of the join may not reduce the number

of disk operations for the table on the other side of the

join. Therefore, disk I/O operations can be estimated

according to optimistic (concentrated keys) or pessimis-

tic (spread out keys) scenarios. In the optimistic one,

the number of operations is the same as in a RAM join,

whereas in the pessimistic one the whole table may need

to be scanned for each chunk, so disk I/O can increase

N times. According to modern servers(>100Gb of RAM for

a node), this risk is actual when left part of the join contains

over one billion of rows. Hash join for tables of millions

of rows is safe.

Figure above demonstrates three cases of inner join.

First case: smaller table contain two disk pages of keys,

correspondent keys in bigger table occupy three disk

pages. Second case: smaller table reduced twice, to one

disk page, correspondent keys in bigger table are con-

centrated, so to read them one need to scan only two

disk pages instead of three. Third case: smaller table re-

duced twice, but correspondent keys are not concentrat-

ed but distributed (see gaps), so one need to read same

number of disk pages, as before (three).

 Group by spill. Group by phase of the query can

also be executed by Hash Group algorithm, and it also

can be spilled on disk, as a join phase. This risk is actual

if there are more than hundreds of millions of groups in a

group by phase.

 Resegmentation/broadcast. If two tables are joined

together, and they are joined and segmented over nodes

of MPP cluster using different keys, than joining may be

performed either by resegmentation of one table across

all nodes, or by broadcasting all data of one table across

all nodes (see Section 2). This risk is actual if tables in

question contains billions of rows.

 Wrong materialization. Materialization strategy is

extremely important for column-based databases [8].

Materialization strategy defines process of combin-

ing column data together (in a column based databases

they are stored separately). It is extremely important for

join queries. There can be early materialization (read

columns, combine columns, than apply filter), or late

materialization (read filtered column, apply filter, read

other columns according to filtered rows, combine). Ac-

cording to [1], it is more efficient to select late materiali-

zation strategy. But if a query is complex, query optimiz-

er can make a mistake. If query requires join of tables A,

B and C, and has a filtering condition to tables A and B,

late materialization may lead to loading of filtered values

from A, B in parallel, all values from C, and join them

together. This strategy is efficient if condition on table A

and B reduce data a lot, while join with tables B and C

don’t reduce data. Otherwise, if each condition takes

of A and B, and conditions are uncorrelated, than join-

Case 1 Case 2 Case 3

Fig. 2. Three cases of inner join

DECISION MAKING AND BUSINESS INTELLIGENCE

11BUSINESS INFORMATICS №3(33)–2015

ing filtered tables A and B will result in part of data,

so early materialization can significantly reduce disk

I/O of tables B and C.

Risks, listed above, can be avoided by using modified

query execution plans, based on following principles:

 Maximum merge join utilization. Sort-Merge join

algorithm is a most effective for non-selective analyti-

cal queries among such algorithms as Hash Join, Nested

Loop Join and Sort-Merge join, especially if analyzed

data are already sorted on join key, so only merge join

operation is required, without sort operations [3].

 Single time disk page access. Query plan with a

join spill has awful characteristics in terms of pessi-

mistic number of disk page access operations because

many disk pages are accessed multiple times during

plan execution. To create plan with optimal charac-

teristics each required disk page must be accessed no

more than once.

 Massive temporary table utilization. Two princi-

ples, mentioned above, cannot be guaranteed for all

ad-hoc queries to real-world Big Data databases, cre-

ated according to 1/2/3 normal form. Table of dozen

columns cannot be sorted on each column (without

duplicating this table dozen times). Also it cannot be

guaranteed that all keys in joined tables are concen-

trated, to equalize pessimistic and optimistic disk page

operation count (see fig. 2). But this principles can be

guaranteed in a Anchor Modeling data model, if each

data subset, retrieved after each step of filtering, is

stored as a temporary table. Temporary tables can be

sorted on specific column, to optimize further merge

join. Also those temporary tables contain concentrated

keys, only keys, required for given ad-hoc query. This

feature helps to avoid double disk page access. Con-

cerning speed of creating temporary table for large data

set: modern HDDs provide equal speed for sequential

read and sequential write. Important. Given algorithms

don’t require creation of indexes of any kind. Only

storing sorted rows as a temporary table, so this opera-

tion can be as fast, as saving a data file on HDD. Sort-

ing is enough for efficient Merge Join.

Efficient plans for analytical queries, utilizing princi-

ples, listed above, can be created using following algo-

rithm:

0. Assume that query is based on joining tables

, filtered according to complex conditions

, there is a condition on table j,

which can be estimated only when i tables are already

loaded. So, is single table filtering condition. is a

combination of all conditions on table j.

1. Estimate data reduction rate for each table

where R(T
j
) means number of rows. Chose the tables

with best reduction rate to be the first one (assume that

it is table T
1
).

2. Take k
1
 tables, identically segmented with table T

1
.

Assume that those tables are . Join all k
1
 tables,

using all applicable filtering conditions, using merge join

algorithm, consequently, starting from table T
1
. So table

T
1
 has to be scanned and filtered first, than only cor-

responding rows from T
2
 has to be scanned and filtered

according to conditions and , than the same for ta-

bles .

3. Estimate data reduction rate for remaining tables

 ,

using data tables, joined and filtered on step 2. Chose

the tables with best reduction rate to be the next one (as-

sume that it is table).

4. Save results of joining and filtering tables from step

2 inside a temporary table , identically segmented

with table .

5. Replace tables of initial list with a table .

6. Return to step 2 with reduced list of tables.

7. It list of tables contain single table, perform final ag-

gregations, save results.

Given algorithm has important drawbacks:

1. It requires a lot of statistics about source tables,

about data reduction rate of conditions, for step 1. In

some cases first estimation of statistics can require more

efforts, than analytical query itself.

2. Statistics estimation, as well as creation of tempo-

rary tables with dedicated segmentation, has to be im-

plemented manually, because current version of query

optimizers and query processing engines can not do it.

Avito used Python implementation.

Drawback 1 can be avoided using estimates from pre-

viously calculated queries, continuously. First process-

ing of brand new query can be time-consuming.

Drawback 2 can be avoided for identically segmented

tables, because algorithm ends on step 2. That is why

Anchor Modeling data model for MPP environment is

especially favorable for approach. Step 2 does not re-

quire implementation of additional logic, it can be per-

formed using SQL, database query execution engine and

some hints.

DECISION MAKING AND BUSINESS INTELLIGENCE

12 BUSINESS INFORMATICS №3(33)–2015

5. Business

applications

The approach described in Section 4 has been im-

plemented for ad-hoc querying in a Big Data (data

warehouse) solution at Avito. Based in Moscow, Avito

is Russias fastest growing e-commerce site and portal,

«Russia’s Craiglist». The Avito data warehouse is imple-

mented according to the Anchor modeling methodolo-

gy. It contains 200 Anchors, 600 Attributes, and 300

Ties. Using this model it loads, maintains, and presents

many types of data. The greatest volume can be found

in the part loaded from the click stream data sources.

Click stream data are loaded every 15 minutes, with each

15-minute batch containing 5 mln. rows at the begin-

ning of 2014 and 15 mln. at the beginning of 2015.

Each loaded row contained approximately 30 columns

at the beginning of 2014 and approximately 70 columns

at the beginning of 2015. Each column is a source for a

separate Anchor, Attribute or Tie table. The current size

of the Avito data warehouse has been limited to 51Tb

for licensing reasons. It contains years of consistent his-

torical data from various sources (back office, Google

DFP/AdSense, MDM, accounting software, various ag-

gregates), and a rolling half year of detailed data from

click stream.

The presented approach for ad-hoc queries was suc-

cessfully implemented by the Avito BI team in less than

a year. It provides analysts at Avito with a tool for fast

(5-10-2060 minutes) analysis of near-real time Big

Data, according to various types of tasks, such as direct

marketing, pricing, CTR prediction, illicit content de-

tection, and customer segmentation.

Conclusions

A high degree of normalization has the advantage of

flexibility. The resulting data models can be extended

easily and in a lossless manner. Anchor modeling also

enables parallel loading of all entities, their attributes,

and links with or without historization of each link and

attribute. The supposed drawback of a highly normal-

ized data model is slow ad-hoc reporting, which is why

Inmon [4] recommends combining normalized mod-

els for centralized repositories with denormalized data

marts. The paper, however, demonstrates that while

Anchor modeling may require some sort of denormal-

ization for single-entity analysis, it can yield very high

performance for queries that involve multiple linked en-

tities, and particularly so when there is a risk of join spill

(lack of RAM).

The experiments carried out showed benefits of the

given approach for the simplified case of two linked en-

tities. Realworld business cases sometimes require three,

four or even a dozen linked entities in the same ad-hoc

query. Such cases multiply the risk of join spill occurring

in some step, and amplify its negative effect. If number

of joins, tables and filtering conditions increases, que-

ry RAM requirements estimation accuracy decreases.

Query optimizer can significantly overestimate RAM

requirements and cause an unnecessary join spill with all

associated drawbacks. The approach from Section 4 has

been in use at Avito for over a year, for ad-hoc and reg-

ular reporting, and even for some near-real time KPIs.

It has demonstrated stability in terms of execution time

and resource consumption, while ordinary queries often

degraded after months of usage because of data growth.

One can wonder if the approach from Section 4 can be

applied for implementations based on other techniques

than Anchor modeling. The answer is yes, it can be ap-

plied, but with additional work. The strictly determined

structure of Anchor modeling enables Avito to have

a fully automated and metadata-driven implementa-

tion of the given approach. To conclude, the approach,

while not being uniquely tied to Anchor modeling, suits

such implementations very well and compensates for the

commonly believed drawback of normalization in the

perspective of ad-hoc querying.

References

1. Abadi D.J., Myers D.S., DeWitt D.J., Madden S.R. (2007) Materialization strategies in a Column-Oriented

DBMS. Proceedings of the 23rd IEEE International Conference on Data Engineering (ICDE 2007), April 15-20,

2007, Istanbul, Turkey, pp. 466–475.

2. Chen M., Mao S., Liu Y. (2014) Big Data: A survey. Mobile Networks and Applications, no. 19, pp. 171–209.

3. Graefe G. (1999) The value of merge-join and hash-join in SQL Server. Proceedings of the 25th International

Conference on Very Large Data Bases (VLDB 1999), September 7-10, 1999, Edinburgh, Scotland, pp. 250–253.

4. Inmon W.H. (1992) Building the Data Warehouse, Wellesley, MA: QED Information Sciences.

5. Kalavri V., Vlassov V. (2013) MapReduce: Limitations, optimizations and open issues. Proceedings of the 12th

IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom

2013), July 16-18, 2013, Melbourne, Australia, pp. 1031–1038.

DECISION MAKING AND BUSINESS INTELLIGENCE

13BUSINESS INFORMATICS №3(33)–2015

6. Knuth D. (1998) The art of computer programming. Volume 3: Sorting and searching. 2nd edition, Boston, MA:

Addison–Wesley.

7. Lamb A., Fuller M., Varadarajan R., Tran N., Vandiver B., Doshi L., Bear C. (2012) The Vertica analytic data-

base: C-store 7 years later. Proceedings of the VLDB Endowment, vol. 5, no. 12, pp. 1790–1801.

8. Shrinivas L., Bodagala S., Varadarajan R., Cary A., Bharathan V., Bear C. (2013) Materialization strategies in

the Vertica analytic database: Lessons learned. Proceedings of the 29th IEEE International Conference on Data

Engineering (ICDE 2013), April 8-11, 2013, Brisbane, Australia, pp. 1196–1207.

9. Ronnback L., Regardt O., Bergholtz M., Johannesson P., Wohed P. (2010) Editorial: Anchor Modeling –

agile information modeling in evolving data environments, Data and Knowledge Engineering, vol. 69, no. 12,

pp. 1229–1253.

ОПТИМИЗАЦИЯ SQL-ЗАПРОСОВ

ДЛЯ ВЫСОКОНОРМАЛИЗОВАННЫХ БОЛЬШИХ ДАННЫХ

Н.И. ГОЛОВ
преподаватель кафедры бизнес-аналитики,
школа бизнес-информатики, факультет бизнеса и менеджмента,
Национальный исследовательский университет «Высшая школа экономики»

Адрес: 101000, г. Москва, ул. Мясницкая, д. 20
E-mail: ngolov@hse.ru

Л. РОНБАК
преподаватель факультета компьютерных наук, Университет Стокгольма

Адрес: SE-106 91 Stockholm, Sweden
E-mail: lars.ronnback@anchormodeling.com

В данной статье описывается подход для быстрого анализа больших данных в реляционной модели
данных. Целью данного подхода является достижение максимального использования высоконормализанных
временных таблиц, объединяемых посредством алгоритма соединения слиянием (merge join algorithm). Подход
был разработан для методологии Anchor Modeling, предполагающей крайне высокий уровень нормализации
таблиц. Anchor Modeling – это новейшая методология построения хранилищ данных, разработанная для
классических баз данных и адаптированная для задач больших данных и MPP (массивно-параллельных)
баз данных авторами статьи. Anchor Modeling обеспечивает гибкость расширения и высокую скорость
загрузки данных, в то время как представленный подход к оптимизации запросов дополняет методологию
возможностью «на лету» проводить быстрый анализ больших выборок данных (десятки Тб).

В статье описаны и оценены различные подходы к оптимизации планов выполнения запросов для
колоночных и обычных (строчных) баз данных. Представлены и сопоставлены результаты теоретических
оценок и практических экспериментов на реальных данных, проведенных на платформе колоночной массивно-
параллельной (MPP) базы данных HP Vertica. Результаты сравнения демонстрируют, что подход особенно
эффективен для случаев нехватки доступной оперативной памяти, в результате чего оптимизатору
запросов базы данных при обработке аналитических запросов приходится переходить от наиболее
оптимального режима обработки в оперативной памяти (in-memory) к режиму подкачки с жесткого
диска. Также изучен вопрос масштабирования нагрузки. Для этого один и тот же анализ производился
на кластерах массивно-параллельной СУБД Вертика, состоящих из разного количества серверов. Были
испытаны конфигурации из пяти, десяти и двенадцати серверов. Для анализа применялись данные типа
«поток кликов» – обезличенные данные о кликах пользователей Авито, крупнейшего российского сайта
объявлений.

DECISION MAKING AND BUSINESS INTELLIGENCE

14 БИЗНЕС-ИНФОРМАТИКА №3(33)–2015 г.

Ключевые слова: большие данные, массивно-параллельная обработка (MPP), база данных, нормализация,

аналитика, аналитика «на лету», запросы, моделирование, производительность.

Цитирование: Golov N.I., Ronnback L. SQL query optimization for highly normalized Big Data // Business Informatics.

2015. No. 3 (33). P. 7–14.

Литература

1. Abadi D.J., Myers D.S., DeWitt D.J., Madden S.R. Materialization strategies in a Column-Oriented DBMS // Proceedings of the 23rd

IEEE International Conference on Data Engineering (ICDE 2007), April 15-20, 2007, Istanbul, Turkey. IEEE, 2007. P. 466–475.

2. Chen M., Mao S., Liu Y. Big Data: A survey // Mobile Networks and Applications. 2014. No. 19. P. 171–209.

3. Graefe G. The value of merge-join and hash-join in SQL Server // Proceedings of the 25th International Conference on Very Large Data

Bases (VLDB 1999), September 7-10, 1999, Edinburgh, Scotland. 1999. P. 250–253.

4. Inmon W.H. Building the Data Warehouse. Wellesley, MA: QED Information Sciences, 1992. 272 p.

5. Kalavri V., Vlassov V. MapReduce: Limitations, optimizations and open issues // Proceedings of the 12th IEEE International Conference

on Trust, Security and Privacy in Computing and Communications (TrustCom 2013), July 16-18, 2013, Melbourne, Australia. IEEE, 2013.

P. 1031–1038.

6. Knuth D. The art of computer programming. Volume 3: Sorting and searching. 2nd edition. Boston, MA: Addison–Wesley, 1998. 782 p.

7. The Vertica analytic database: C-store 7 years later / A. Lamb [et al] // Proceedings of the VLDB Endowment. 2012. Vol. 5, No. 12. P.

1790–1801.

8. Shrinivas L., Bodagala S., Varadarajan R., Cary A., Bharathan V., Bear C. Materialization strategies in the Vertica analytic database: Lessons

learned // Proceedings of the 29th IEEE International Conference on Data Engineering (ICDE 2013), April 8-11, 2013, Brisbane, Australia.

IEEE, 2013. P. 1196–1207.

9. Editorial: Anchor Modeling – agile information modeling in evolving data environments / L. Ronnback [et al] // Data and Knowledge

Engineering. 2010. Vol. 69, No. 12. P. 1229–1253.

ПРИНЯТИЕ РЕШЕНИЙ И БИЗНЕС-ИНТЕЛЛЕКТ

