Графическая аннотация
ISSN 1998-0663 (print), English version: ISSN 2587-814X (print), |
Карминский А. М.1, Бурехин Р. Н.1Сравнительный анализ методов прогнозирования банкротств российских строительных компаний
2019.
№ 3 Vol.13.
С. 52–66
[содержание номера]
Работа посвящена сравнению способности различных моделей предсказывать банкротство компаний строительной отрасли на горизонте в один год. Рассмотрены такие алгоритмы, как логит- и пробит-модели, деревья классификации, случайные леса, искусственные нейронные сети. Особое внимание уделено особенностям построения моделей машинного обучения, влиянию несбалансированности данных на предиктивную способность моделей, анализу способов борьбы с несбалансированностью данных, анализу влияния нефинансовых факторов на предиктивную способность моделей. В работе использованы нефинансовые и финансовые показатели, рассчитанные на основе публичной финансовой отчетности строительных компаний за период с 2011 по 2017 годы. Сделан вывод, что рассмотренные алгоритмы показывают приемлемое качество для использования в задачах прогнозирования банкротств. В качестве метрики качества моделей использовался коэффициент Джини или AUC (площадь под ROC-кривой). Выявлено, что искусственные нейронные сети превосходят другие методы, в то время как модели логистической регрессии в сочетании с дискретизацией вплотную следуют за ними. Обнаружено, что эффективность способа преодоления несбалансированности данных зависит от типа используемых моделей. В то же время значимого влияния несбалансированности обучающего множества на предиктивную способность модели не выявлено. Существенное влияние нефинансовых показателей на вероятность банкротства также не подтвердилось. Графическая аннотация
Библиографическое описание:
Карминский А.М., Бурехин Р.Н. Сравнительный анализ методов прогнозирования банкротств российских строительных компаний // Бизнес-информатика. 2019. Т. 13. № 3. С. 52–66. DOI: 10.17323/1998-0663.2019.3.52.66
Ключевые слова:
банкротство;
строительный сектор;
несбалансированность данных;
модели машинного обучения;
параметрические модели предсказания банкротства
|
|