Применение многоагентного генетического алгоритма для поиска оптимальных стратегических и оперативных решений

  • Максим Хивинцев Национальный исследовательский университет «Высшая школа экономики»
  • Андраник Акопов Центральный экономико-математический институт, Российская академия наук, Москва, Россия
Ключевые слова: системная динамика, многокритериальная оптимизация, параллельные генетические алгоритмы, проблема большой размерности, граница Парето

Аннотация

Хивинцев Максим Андреевич - аспирант кафедры бизнес-аналитики, факультет бизнес-информатики, Национальный исследовательский университет «Высшая школа экономики».
Адрес: 101000, Москва, Мясницкая ул., 20.
E-mail: mkhivintsev@hse.ru

Акопов Андраник Сумбатович - доктор технических наук, профессор кафедры бизнес-аналитики, факультет бизнес-информатики, Национальный исследовательский университет «Высшая школа экономики».
Адрес: 101000, Москва, Мясницкая ул., 20.
E-mail: aakopov@hse.ru

     В статье представлен новый подход к применению многоагентного генетического алгоритма (MAGAMO) для поиска оптимальных стратегических и оперативных решений в имитационных моделях большой размерности.
     Цель работы – разработка с использованием методов системной динамики имитационной модели типового Интернет-магазина и применение многоагентного генетического алгоритма MAGAMO для решения многокритериальной оптимизационной задачи стратегического и оперативного управления, относящейся к классу задач сверхбольшой размерности.  Для реализации математической модели типового Интернет-магазина используется система имитационного моделирования Powersim Studio.
     Объектом исследования являются многокритериальные оптимизационные задачи большой размерности, реализуемые в системах имитационного моделирования.
     Для решения подобных задач предложен многоагентный генетический алгоритм MAGAMO. Особенностью данного алгоритма является распределение набора управляющих параметров системы между агентами на основе предварительного кластерного анализа. Каждый агент представляет собой независимый генетический алгоритм  с собственной эволюцией решений, соответствующих заданным управляющим параметрам. Информационный обмен между агентами, функционирующими в параллельных процессах, осуществляется через разделяемую память системы (многомерную базу данных).  При этом центральный процесс отвечает за отбор решений наивысшего ранга Парето. С использованием специального программного средства Pareto Front Viewer обеспечивается визуализация фронт Парето.
     Разработанная имитационная модель интегрирована с  алгоритмом MAGAMO, системой визуализации границы Парето и многомерной базой данных.
     В результате проведенных численных экспериментов, осуществленных на реальных данных Интернет-магазина, продемонстрирована высокая эффективность разработанного многоагентного генетического алгоритма для поиска оптимальных решений в системах имитационного моделирования большой размерности. 

Скачивания

Данные скачивания пока не доступны.
Опубликован
2014-02-14
Как цитировать
ХивинцевМ., & АкоповА. (2014). Применение многоагентного генетического алгоритма для поиска оптимальных стратегических и оперативных решений. Бизнес-информатика, 8(1), 23-33. извлечено от https://bijournal.hse.ru/article/view/26178
Раздел
Анализ данных и интеллектуальные системы