Проблемы достоверности пользовательских оценок и отзывов на маркетплейсах: системный подход
Аннотация
Пользовательские оценки и отзывы на маркетплейсах подвержены систематическим искажениям, что создает серьезные риски для участников электронной коммерции и снижает эффективность рыночных механизмов. Исследование представляет комплексный анализ проблемы искажения информации, охватывающий процесс от формирования оценки до ее системного учета. Цель работы – систематизация факторов искажения информации на маркетплейсах и разработка метрик для количественной оценки достоверности. Применен междисциплинарный подход, интегрирующий экономические теории, психологические концепции, а также знания из поведенческой экономики и информатики. Исследование расширяет понимание информационной экономики в контексте цифровых платформ, выявляя взаимосвязи между качеством информации и поведением участников рынка. Результаты имеют практическое значение для разработчиков маркетплейсов, регуляторов и пользователей, обеспечивая основу для создания эффективных механизмов контроля качества информации.
Скачивания
Литература
Liu Z., Zhang D.J., Zhang F. (2021) Information sharing on retail platforms. Manufacturing Service Operations Management, vol. 23(3), pp. 606–619. https://doi.org/10.1287/msom.2020.0915
Hu X., Jiang Y., Guo P., Li M. (2024) How does China's big data policy affect the digital economy of cities? Evidence from national big data comprehensive pilot zones. Heliyon, vol. 10(2), e24638. https://doi.org/10.1016/j.heliyon.2024.e24638
Rong K. (2022) Research agenda for the digital economy. Journal of Digital Economy, vol. 1(1), pp. 20–31. https://doi.org/10.1016/j.jdec.2022.08.004
Akerlof G.A. (1970) The market for "Lemons": Quality uncertainty and the market mechanism. The Quarterly Journal of Economics, vol. 84(3), pp. 488–500. https://doi.org/10.2307/1879431
Hayek F.A. (1945) The use of knowledge in society. The American Economic Review, vol. 35(4), pp. 519–530.
Song P., Zheng C., Zhang C., Yu X. (2018) Data analytics and firm performance: An empirical study in an online B2C platform. Information Management, vol. 55(5), pp. 633–642. https://doi.org/10.1016/j.im.2018.01.004
Liang D., Li M., Feng H., Feng N. (2024) Should competing sellers adopt the data analytics service to enable product improvement in online marketplace. Journal of Management Science and Engineering, vol. 9(3), pp. 390–418. https://doi.org/10.1016/j.jmse.2024.03.002
ozon.ru (2024) OZON customer reviews. Available at: https://docs.ozon.ru/global/promotion/feedback/customers-reviews/?country=CN (accessed 16 January 2025) (in Russian).
Hu N., Bose I., Koh N.S., Liu L. (2022) Manipulation of online reviews: An analysis of ratings, readability, and sentiments. Decision Support Systems, vol. 43(2), pp. 553–575. https://doi.org/10.1016/j.dss.2022.04.003
Luca M., Zervas G. (2016) Fake it till you make it: Reputation, competition, and yelp review fraud. Management Science, vol. 62(12), pp. 3412–3427. https://doi.org/10.1287/mnsc.2015.2304
Li X., Hitt L.M., Zhang Z.J. (2024) Product reviews and competition in markets for repeat purchase products. Journal of Management Information Systems, vol. 41(1), pp. 82–112. https://doi.org/10.1080/07421222.2023.2219584
Shan G., Zhou L., Zhang D. (2021) From conflicts and confusion to doubts: Examining review inconsistency for fake review detection. Decision Support Systems, vol. 144, article 113513. https://doi.org/10.1016/j.dss.2021.113513
Hajek P., Hikkerova L., Sahut J.-M. (2023) Fake review detection in e-commerce platforms using aspect-based sentiment analysis. Journal of Business Research, vol. 167, article 114143. https://doi.org/10.1016/j.jbusres.2023.114143
Beklaryan A.L., Beklaryan L.A., Akopov A.S. (2021) Implementation of the Deffuant model within the FLAME GPU framework. Advances in Systems Science and Applications, vol. 21(4), pp. 87–99. https://doi.org/10.25728/assa.2021.21.4.1161
Kozitsin I.V. (2024) Optimal control in opinion dynamics models: diversity of influence mechanisms and complex influence hierarchies. Chaos, Solitons & Fractals, vol. 181, article 114728. https://doi.org/10.1016/j.chaos.2024.114728
Hatfield E., Cacioppo J.T., Rapson R.L. (1994) Emotional contagion. Cambridge University Press.
Kim J., Park H.S. (2011) The effect of uniform virtual appearance on conformity intention: Social identity model of deindividuation effects and optimal distinctiveness theory. Computers in Human Behavior, vol. 27(3), pp. 1223–1230. https://doi.org/10.1016/j.chb.2011.01.002
Cialdini R.B. (2009) Influence: Science and practice (5th ed.). Pearson Education.
Festinger L. (1957) A theory of cognitive dissonance. Stanford University Press.
Simon H.A. (1955) A behavioral model of rational choice. The Quarterly Journal of Economics, vol. 69(1), pp. 99–118. https://doi.org/10.2307/1884852
Zhang D., Zhou L., Kehoe J.L., Kilic I.Y. (2023) What do online product reviews mean? Mining review text for helpfulness prediction. Journal of Management Information Systems, vol. 40(1), pp. 42–77. https://doi.org/10.1080/07421222.2022.2077881
Kim J.M., Park K.K., Mariani M., Wamba S.F. (2024) Investigating reviewers' intentions to post fake vs. authentic reviews based on behavioral linguistic features. Technological Forecasting and Social Change, 198, article 122971. https://doi.org/10.1016/j.techfore.2023.122971
Coleman J.S. (2004) Rational choice in economic sociology. Economic Sociology, vol. 5(3), pp. 35–44 (in Russian). https://doi.org/10.17323/1726-3247-2004-3-35-44
Norman D.A. (2023) The design of everyday things: Revised and expanded edition. Basic Books.
Nielsen J. (2000) Designing Web Usability: The Practice of Simplicity. New Riders Publishing.
Wang R.Y., Strong D.M. (1996) Beyond accuracy: What data quality means to data consumers. Journal of Management Information Systems, vol. 12(4), pp. 5–33. https://doi.org/10.1080/07421222.1996.11518099
Kemeny J.G. (1959) Mathematics without numbers. Daedalus, vol. 88, pp. 577–591.
Kahneman D., Tversky A. (1979) Prospect theory: An analysis of decision under risk. Econometrica, vol. 47(2), pp. 263–291. https://doi.org/10.2307/1914185
Thakur R., Hale D., Summey J.H. (2018) What motivates consumers to partake in cyber shilling? The Journal of Marketing Theory and Practice, vol. 26(1-2), pp. 181–195. https://doi.org/10.1080/10696679.2017.1389236
Copyright (c) 2025 Национальный исследовательский университет «Высшая школа экономики»

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.








